Ecosystem Effects Modeling

Steven M. Bartell

to model somehow the passing of a butterfly along with the growing of a tree.

Allen and Starr (1982)
AN ECOSYSTEM PARADIGM

m remains a fundamental conceptual unit not only in basic ecological research,
environmental assessment and management. The limitations of organism-level

al assessments raised decades ago remain (NRC 1981; O’Neill and Waide 1981;
| and Levin 1985). To address these limitations, ecologists, environmental toxicolo-

risk assessors have continued to develop, apply, and evaluate methods and models

erizing ecosystem-level risks (Pastorok et al. 2002). Ecosystem modeling continues
tribute importantly to assessing ecological risk.

s chapter defines and describes ecosystem risk assessment and emphasizes the use of
em models for estimating risk. In this presentation, ecosystem models include physical

5 (e.g., micro-, mesocosms), network analytical models, and compartmental simulation
5. Physical models are discussed briefly. The intent is to underscore the similarities in
(e.g., model structure, scale, initial conditions) that must be addressed in effectively
physical and mathematical models to characterize risk. Network analytic techniques
;6w analysis, loop analysis) are mentioned because they offer a largely unrealized
itial application in ecosystem risk assessment. Not surprisingly, the majority of the
ntation addresses ecosystem simulation models as tools for assessing risk.

e chapter identifies and describes several ecosystem simulation models (AQUATOX,
M, and IFEM) available for assessing ecological risks posed by chemical contaminants
other agents. These models have bee

n developed with ecological risk assessment as a
cipal modeling objective. This chapter

does not present an exhaustive list of ecosystem
dels that might be used to assess risk. Pastorok et al. (2002) comprehensively reviewed

sting ecosystem models that might be adapted for estimating ecological risks, and the
erested reader should consult this reference. Nevertheless, criteria for selecting among
sting models are presented within this chapter. Following a discussion of the relative

engths and limitations of ecosystem models in assessing risk, the focus shifts to adapting
ailable ecosystem models and developing new models for ecosystem-level risk assessment.
The development of practical capabilities in assessing ecosystem-level risks cannot proceed
fependently from the continuing evolution of ecosystem conce

pts and theory (e.g., Golley
93: O’Neill 2001). Ecosystems are not simply places and the term “ecosystem” should not
s used in risk assessment simply to denote habitat. Perhaps the most significant contribution

[ ecosystem theory to modern ecology includes the recognition of important biotic-abiotic
sedback mechanisms that determine the dynamics of syst

em structure and function. That is,
hysical-chemical factors dictate the nature and kinds of o

rganisms that can inhabit a specific

/
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area or volume. In turn, the effects of resident organisms on those factors can result i
subsequent habitat conditions that preclude the continued occupation by those organism
and open the area for new inhabitants. The essence of ecosystem lies not in habitat, but in thg
biotic-abiotic feedback mechanisms that strongly influence system dynamics and response t¢
disturbance. Ecosystem-level risk assessments ought to rightly focus on risks to these feed.
back mechanisms.

Another conceptual contribution of ecosystem theory lies in the recognition of the signifj.
cance of asymmetry in functional relationships among organisms and between biotic ang
abiotic components of ecosystems. Not all structures, processes, and interactions are of equal
importance at all times or locations. Ecosystem dynamics integrate spatial-temporal shifts ip
interaction strengths (e.g., competition, grazing, predation) among participating organisms
within a changing physical-chemical context. Seasonal changes in the relative importance o
“bottom-up”’ and “top—down” control of production in aquatic systems provide one examp
of such asymmetry (e.g., Bartell et al. 1989).

Asymmetry in ecosystems is important to risk assessment. Characterization of ecosystem
asymmetry can provide insights to the selection of endpoints for risk assessment (Chapter 16
and suggest relevant scales in time and space (Chapter 6) to guide the development of a
conceptual model (Chapter 17). Knowledge of relevant scales of exposure can be used te
identify corresponding species and ecosystem processes that appear important in relation tg
the hazardous agents. '

Ecosystem asymmetry facilitates the simplifying assumptions that provide a basis for less
comprehensive descriptions (e.g., population models) used to estimate risks. If a population
model provides accurate estimates of measured population fluctuations, it is because the
simplifying assumptions underlying the population model are congruent with the overarc
ecosystem asymmetries relevant to the population model.

Properly structured ecosystem models afford the opportunity to incorporate biogeochem:-
ical asymmetries and examine their implications for estimating risk. For example, positive
effects of nutrient enrichment on ecological production can mask the detrimental effects of
simultaneous exposure to toxic chemicals (e.g., Breitburg et al. 1999; Riedel et al. 2003).
Differential affinity for nutrients and susceptibility to toxic chemicals can together determine
how any added productivity will be apportioned among the food web components. Such
opportunity to explore asymmetry in ecosystem structure and function is absent from
other ecological modeling constructs (e.g., organism models, population models, land
scape models).

28.2 ECOSYSTEM RISK ASSESSMENT

Following from the proposition that asymmetric functional relationships and biotic-abioti¢
feedback control mechanisms are key concepts that distinguish ecosystem ecology from other:
levels of ecological inquiry, ecosystem risk assessment should correspondingly focus on
changes in functional relationships and feedback mechanisms caused by single or multlpl
agents. In the proper parlance of ecosystem theory and risk assessment, ecosystem risk
assessment ought to emphasize assessment and measurement endpoints specifically related
to effects on the flow of energy, cycling of materials, strengths of competitive, grazing, and
predator /prey interactions, and corresponding implications for system structure (e.g., species
composition, community structure), function, and stability (e.g., resistance, resilience). These
are the kinds of endpoints that cannot be addressed by assessments that focus on organisms’
or populations. / i

In practice, ecosystem risk assessment tends to emphasize population-level effects char-
acterized within a dynamic physical-chemical context. Explorations into the relative
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contribution of direct and indirect effects on population risks do, however, provide examples
of ecosystem models used to address some of the biogeochemical (minus the geochemical)
2 ymmetrles that connote ecosystem risk.

; 8.2.1 EcOsySTEM ASSESSMENT ENDPOINTS

The specification of ecosystem-level endpoints follows logically from the preceding consider-
ation of ecosystems. Suter and Bartell (1993) identified four kinds of ecological effects that
ean be observed in ecosystems, but are not possible for an organism or a population: (1) the
¢ ffect of an agent on the nature of ecological interactions (e.g., predation, competition)
among resident populations; (2) indirect effects that propagate through organisms sensitive
to the agent and subsequently impact organisms not directly affected (e.g., reduced abun-
dance of a predator resulting from toxic effects on prey); (3) alterations in the trophic
structure or number of species; and (4) alterations in ecosystem function, including produc-
tion, decomposition, and nutrient cycling. Suter and Bartell (1993) distinguished between
: sessment of population-level effects (i.e., effects 1 and 2) in an ecosystem context and true
ecosystem-level effects (i.e., effects 3 and 4).

~ One of the key ecosystem concepts concerns feedback control mechanisms between biotic
} ad abiotic system components. Abiotic factors (e.g., soil chemistry) can importantly deter-
mine the growth and establishment of species adapted for the existing conditions—abiotic
factors determine ecological structure. Subsequently, the biological activities of resident
organisms can modify the abiotic conditions to the point that the resident species can no
longer tolerate the modified conditions and different species adapted to these conditions can
replace the current inhabitants—here, biological activity determines the abiotic environment
"d eventual ecological structure. Thus, alterations in evolved patterns of abiotic-biotic
feedback control mechanisms could pose serious threats to ecosystem integrity. Alterations
in such patterns would in theory constitute important ecosystem-level endpoints. Yet, these
sophisticated ecosystem endpoints have seldom been included in ecological risk assessments.
Ecosystem models can be used to address these kinds of endpoints.

v’8 3 ECOSYSTEM SIMULATION MODELING

For this discussion, ecosystem simulation models refer to those ecological models which
5‘ clude both biotic state variables that describe one or more primary producers and con-
sumers and one or more abiotic state variables or processes that are functionally linked to the
lOth state variables. Their models should demonstrate functional interrelationships, e. g.,
grazing, predation, and competition, expressed between the producer and consumer state
variables. The abiotic factors, e.g., light or nutrient limitation of primary production, should
influence the expression of the biological and ecological interaction represented by the model.
Importantly, the biological and ecological processes included in the model should permit
the modification of the abiotic state variables (e.g., nutrient uptake or remineralization
influencing dissolved or soil nutrient concentrations).

3 An ecosystem risk assessment model should be spatially defined. The modeled temporal
ynamlcs should be specified over some spatial scale, e.g., a square meter or hectare
for models of terrestrial ecosystems or similar volumetric scales for aquatic ecosystem
models. Recent advances in ecosystem modeling have produced spatially articulated
models wherein a single description of biotic and abiotic structures and interactions are
defined repeatedly for multiple locations that are functionally interconnected by the flow
0 sater energy, or materials (e.g., Costanza et al. 1990; Bartell and Brenkert 1991; Voinov
1998).
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Several features of ecosystem models strongly recommend them for assessing ecol>
risks. The structural and functional complexity of ecosystem models provides risk as
with tools to estimate both direct and indirect effects. The implications of diffe
susceptibility to chemical and other agents developed from single species tests can be explog
in the context of system-level effects on structure and function. For example, ecosyst

models such as CASM (Bartell et al. 1999, 2000) and AQUATOX (Park and Clough
that define multiple populations within individual trophic guilds can be used to exam;
indirect effects of chemicals on competitive and predator/prey interactions. Normally j
competitors may gain the upper hand if their counterparts prove more sensitive to a che
Populations of prey species might increase substantially if their predators succump
quickly to exposure to a chemical or other agent. Apart from costly and time-consumin
manipulations, ecosystem models provide the only means to address these kinds of dire
indirect effects that can propagate throughout complex ecological systems.

Ecosystem models can address ecological risks posed by simultaneous exposure to m
agents of differing kinds. For example, CASM can be used to estimate risks posed
combination of several toxic chemicals (organic and inorganic), nutrient enrichment
Si), sediment loading, depletion of dissolved oxygen, and fishing pressure, if nece

- Spatially explicit ecosystem models can also examine the implications of spatial patter
habitat degradation and loss, as well as the effects of regional pollution and climatic ch

important, ecosystem-level endpoints, such as energy flow, nutrient cycling, alterations:
abiotic-biotic feedback control mechanisms, and system stability (i.e., resistance and_
ence). Ecosystem models emphasize the description of ecological systems as complex
works that propagate cause and effect, where the network complexity partly reflects cu
description and observations relevant to the system of interest. The network complexi
results from the biases introduced by the model makers and the specific nature
assessment. The currency of flows through these complex networks can be energy (i.e., o
or its material equivalents (e.g., carbon, dry mass, nutrients). Ecosystem models, as repr
tative of complex and ecologically realistic networks, can be used to examine the probabl
ecological implications of even subtle alterations in these kinds of flows, whereas models ¢
organisms or populations, given their structural limitations, cannot. :

Ecosystem models can, in addition to addressing multiple and complex assessment en
points, potentially provide insights for risk management and decision making that cann.
obtained using models of organisms or populations. The strictly empirical paramete
statistical models (e.g., regression coefficients) usually defy interpretation in relatio
management practices; the models may prove accurate in estimating risk, yet provide |
utility to managers who desire to use the models to reduce or mitigate risks. Similar;
highly aggregated parameters of some population models (e.g., the carrying capacity, K) a
difficult to use in managing risk. The process-level equations and parameters general
characteristic of ecosystem models are directly interpretable in terms of physical, chemica
biological, and ecological phenomena that underlie the model. This detailed level of deserif
tion provides information that can be used to develop and evaluate the likely success:
alternative management actions.

28.3.1 PuvsicaL EcosysTem MODELs 1
Physical model ecosystems (e.g., microcosms, mesocosms, whole-system manipulations) pré
vide an alternative approach to characterizing ecological risk (Section 24.3). The appeal |
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ese “‘tangible” ecosystem models is not surprising. Risk can be characterized using the
X - jlts of controlled and replicated experiments: organisms can be counted; chemistry can be
ifferent; jalyzed; and variability in responses can be quantified. These attributes engender a percep-
> eXplorg *,i of reality associated with physical ecosystem models.
2COSyster t the same time, it should be remembered that the derivation and use of physical
0 system models are subject to many of the same assumptions, limitations, and sources of
certainty as their mathematical counterparts. In constructing or excising physical ecosys-
m models, decisions must be made concerning scale (i.e., physical dimensions) and how
uch ecological structure should be included and measured (Gardner et al. 2001). Initial
alues of the physical model “state variables” must be determined. The environmental
ontext (e.g., light, temperature, precipitation) for physical models has to be defined or simply
sed as an uncontrolled regime defined by local conditions. All of the sources of bias and
precision involved in sampling frequency, sample collection, sample processing, and data
anagement are inherent to the use of physical ecosystem models. In addition, the resources
equired to use physical models routinely limit the number of replicates, and associated
ariability among replicate models can be substantial. Finally, the results of the physical
jodels must be interpreted within the context of the ecosystem that they are intended to
gpresent.

18.3.2 EcosysTeM NETWORK ANALYSIS

B :systems can be conveniently described using networks (e.g., Figure 28.1). The “box and
irrow”’ schematic illustrations of ecosystem structure and function have been basic to
cological instruction for decades (e.g., Odum 1971) and practicing ecologists are familiar
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FIGURE 28.1 Example “box and arrow” flow chart for the ten-compartment Cedar Bog Lake ecosys-
°m model. (Redrawn from Williams, R.B., in Systems Analysis and Simulation in Ecology, Vol. I,
Patten, B.C., ed., Academic Press, New York, 1971. With permission.)
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with such conceptual network models. Beyond mere illustration, more formal network
models and network analyses of compartmental descriptions of ecosystems provide powerful
tools for qualitative and quantitative understanding of ecosystem structure and function
These ecosystem network tools can help risk practitioners to characterize ecological risks, The
following sections briefly outline several of these network ecosystem models.
Qualitative network analyses (e.g., “loop” analysis) can be used to describe the stability of
ecosystems in the absence of detailed quantification of interactions among system compon.
ents (Levins 1974). Simple knowledge of positive, negative, and neutral interactions among
system components can be used to develop an interaction matrix, sometimes referred to asa
“competition matrix” (Levins 1974; Lane and Collins 1985). Relationships among sy,
components are designated by signs: (+,—) denotes a predator—prey relationship; (—;
indicates competition between two components. The system is described as a directed
graph, wherein each component is represented as a circle and interactions are described
connecting arrows. Mathematical analysis of the numbers and locations of these various
signed interactions throughout the matrix can provide information concerning the general
stability properties of the system. Relevant to risk assessment, the methods can be used o
examine the stability implications of anthropogenic changes in the nature of the interactions
or removal of a system component (e.g., Lane and Collins 1985). The sensitivity of :
analyses to initial system specification and the overall qualitative nature of the approach have
minimized the application of loop analysis since its introduction into ecology. In addition, the
quantitative magnitudes of component interactions are likely more important than the ove |
qualitative network structure in determining the stability of ecological networks. Howeve ¥
Ortiz and Wolff (2002) have recently revitalized the use of this method. They apply loop
analysis to evaluate the qualitative stability properties of north-central Chilean coastal ma ne
benthic systems in relation to harvesting pressures on scallops. This recent application serves
as a reminder that qualitative methods of ecosystem analysis are possible and that these kinds
of analyses remain potentially useful as tools in contemporary assessment of system-level
ecological risk. Given the incomplete and sparse data routinely available for ecosystem char
acterization, this ecosystem modeling approach might provide useful results for decis
making based on more easily obtained qualitative description of structurally complex systems:
In the early 1970s, quantitative methods of network flow analysis were borrowed from
economics and applied to ecological systems (Hannon 1973). Flow analysis was further
developed for quantitative description of nonsteady-state ecosystems (e.g., Finn 1976) and
subsequently elaborated for detailed characterization of hierarchical structure within eco-
logical networks (Patten et al. 1976). Central to flow analysis is the construction of an input—
output or production matrix (Figure 28.2), wherein the quantitative flows among all inter-
connected system components are estimated along with inputs to,  and losses from, th
components. The inputs, outputs, and intercompartment flows can be measured or produ:
by corresponding dynamic models (Bartell 1978). The production matrix provides a detail
description of system state and patterns of energy or material flux, either at steady-state o
a snapshot at a selected point in time for nonsteady-state conditions. Normalization of fl
among components to inputs (outputs) provides quantitative information concerning the
change in each component associated with a unit increase or decrease in input (output).
Additional calculations can be made to estimate the total flow of energy or material through
the system over a specified time scale. It is further possible to estimate a ratio of flow that
is recycled to total system throughflow. This ratio quantifies the cycling efficiency of the
system represented by the production matrix (Patten et al. 1976). Total system throughflow
and cycling efficiency could serve as higher-order, ecosystem-level endpoints in ecologica
risk assessment. :
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IGURE 28.2 Generalized production or flow matrix.

‘The main challenge in using flow analysis to describe ecosystem dynamics lies in accurately
uantifying inputs, outputs, and flows among system components. This challenge increases
0 plmearly as the number of components in the production matrix increases. The necessary
ues can be provided by detailed field studies (i.e., physical ecosystem models). Alterna-
“ y, dynamic models can be used to provide the value needed to develop a production
matrix for the system of interest (e.g., Bartell 1978). In this case, the methods of flow analysis
e used as another means to summarize modeled system dynamics. This integration of
ynamic models with flow analysis can be used to assess potential effects on higher-order
ecosystem endpoints (e.g., total system throughflow, cycling efficiency).

Flow analysis can be used to characterize ecosystem risk if exposure-response relationships
e developed to quantify changes in flows, inputs, or outputs in relation to the agent of interest.
Figure 28.3 shows a production or flow matrix developed for the Cedar Bog Lake ecosys-
em. The values reflect the system inputs, outputs, and flows corresponding to the network
pmpartmental diagram of this ecosystem. The balance between inflows and outflows char-
cterizes a system that is in a state of dynamic equilibrium. The steady-state dynamics can
50 be inferred from the linear differential equations with constant coefficients used to
ibe this system (see Section 28.3.3).

| To/from X2 X3 Xa Xs | Xg | X7 | Xg | Xg X10 | Inflow Outflow ng

X 13.1

X3 214

X4 61.4

X5 0.68

Xg 0.21

X7 1.01 0.90

Xg 0.17{0.48

Xg 0.28( 0.19 | 0.07
L %10 8.79 | 15.32 | 45.99 | 5.13|0.20| 0.30 | 0.07 | 0.15
__Inflow 0 0. 0
| Outflow 3.30 | 5.40 | 15.20 | 3.90|0.52| 1.42 | 0.34 | 0.56 | 65.35 0 0 95.99
fiColumn || 95.90 o | -9
- l i

GURE 28.3 Flow matrix based on the Cedar Bog Lake model.
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Recent methods for network analysis have been derived in part to address the lnablhty,,
completely define a network for any single ecosystem or comprehensively quantify the produge.
tion matrix in flow analysis. These newer methods (ECOPATH/ECOSIM, NTWRK) focus
on equilibrium conditions and attempt to identify plausible network structures that are .3
patible with available information that quantifies flows among specified system componen(s
(Christensen and Pauly 1992; Monaco and Ulanowicz 1997). These methods have been used ¢ G
assess effects of selected agents on aquatic systems (e.g., Pauly et al. 2000); however, th
studies have not been performed within a formal framework for ecological risk.

The preceding network methods for describing ecosystems are offered as complementary
analyses to the more common ecosystem compartment simulation models described in
Section 28.3.3. Importantly, the network analyses can be used to characterize changes in
the patterns and magnitudes of energy flow or material cycling in systems subjected z}
pollution. Even the more qualitative method of loop analysis can provide some lIlSlgh
concerning alterations in the stability properties of ecosystem networks.

28.3.3 COMPARTMENT MODELS

The term “ecosystem model” has become more routinely associated in risk assessment ith
complex compartment simulation models (Pastorok et al. 2002). The ecosystem compartment
model includes some calculus that describes time-dependent changes in the values of .:_;,

the biotic state variables. Traditionally, ecosystem models have been formulated as coupl d
differential (or dlfference) equatxons where one govermng equation is deﬁned for each

The values of the state variables change th:ough time as a functlon of the model equatxon
that describe ecological and environmental processes internal to the model, e.g., nutrient-
dependent primary production, temperature-dependent grazing, predator/prey relations, 2 nd
decomposition. Modeled temporal dynamics can also result from the time-varying input

values of external environmental factors (e.g., temperature, nutrient loading, toxic chemical
concentrations).

The temporal dynamics of each state variable defmed in the ten—compartment model of -.e.:

(Williams 1971):

X| =118,625cals cm 2y
X, =fiz— X (py+ iy + @27)
X; =/f13— X3 (p3 + 13+ @35)

Xy =/fia — Xa (py + g + @a6)
X5 = @35X3+ @10,5X10 — X5 (ps + s + @57 + @s9)
X = @asXa+ @106X10 — Xs (pg + g + Psg + Pgo +Ag)
X7 =00 Xa+ 057 Xs — X7 (p7+ py + @19 +A7)
Xé = @3 X6 — X3 (pg + pg + ¢go +As)

= @soXs + @go X6 + P19 X7 + @go Xz — Xo (pg + g +Ao) -

Xm = Mo Xo o+ 3 X + X+ s Xs + e Xs + pr X1 + pg X + o Xo — Xio (p1o + @105 + @106 +A10)

Although simpler in form than other aquatic ecosystem models (e.g., CASM, AQUATOX) '
the Cedar Bog Lake model demonstrates features that are characteristic of these kinds of
models. The model indicates losses to respiration (p;), mortality losses to the “ooze” of
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inability ¢

diments (u;), and physical losses from the system (A;) for each compartment i. Trophic
he prodya ansfers from compartment i to j are designated by the ¢;; terms. The same terms common to
RK) foaye yo or more equations define the functional interconnections between the model state
t are cop ariables as illustrated by the “arrows that connect the boxes™ in Figure 28.1. Indirect effects

)mpon.‘
en .
:vel', i;: v

panifest themselves through these functional interconnections.
The critical requirement in selecting or developing an ecosystem model for assessing
ctional relationship between exposure to the agent

: r more of the model process formulations or state
ementar ariables. In addition, the exposed process formulations and model state variables should
cribed i map onto the endpoints of interest for the assessment.

28.3.4 ExisTING EcosysTem Risk MOoDELs

2 ftorok et al. (2002) reviewed the ecological modeling literature and identified only three
scosystem models that were developed to estimate ecological risk. These models essentially
xtrapolate the results of laboratory toxicity assays to anticipated effects in complex aquatic
ystems. Given the emphasis on aquatic toxicity testing, it is not surprising that terrestrial
ecosystem models are absent from the list of available models, Each of the available models is
briefly described. The interested reader is referred to the provided references for detail.

28.3.4.1 AQUATOX

AQUATOX (Park and Clough 2004) models the fate and effects of toxic chemicals, nutrients,
and sediments in a variety of aquatic systems, including lakes, ponds, streams, and reservoirs.
this model estimates risks posed by these agents on modeled populations of aquatic
producers (e.g., phytoplankton, periphyton, submersed aquatic plants) and consumers (e.g.,
zooplankton, benthic invertebrates, and several functionally defined guilds of fish). AQUA-
[OX addresses lethal and sublethal effects on important ecological processes, including

modeled chemical transport and fate processes (e.g., sorption, hydrolysis, volatilization,
photolysis). The model has been developed within a user-friendly interface to facilitate site-
specific applications. Necessary input data include nutrient, sediment, and toxic chemical
oadings to the system of interest; general limnological characteristics of the site; growth

Characteristics of each modeled population; and sensitivity of each population to the agents
of concern. .

28.3.4.2 CASM

The Comprehensive Aquatic Systems Model (CASM) is a bioenergetics-based compartment
model that describes the daily production of biomass (carbon) by populations of aquatic
Plants and animals for an annual cycle. CASM permits site-specific specification of food web
Structure and delineation of daily values of surface light intensity, water temperature, and
Nutrients (N, P, Si) that determine rates of photosynthesis of modeled plant populations. The
model provides for as many as 30 populations of phytoplankton, periphyton, and macro-
Phytes. Up to 40 populations of zooplankton, benthic invertebrates, decomposers, and fish
€an be specified. Modeled populations can be defined taxonomically or functionally. The
mode] was designed originally to examine theoretical relationshjps:. between food web struc-
ture, nutrient cycling, and ecosystem stability (DeAngelis et ‘al. 1989). Since its adaptation
for risk estimation, CASM has been applied to generic assessments for rivers, lakes, and
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reservoirs in Canada (e.g., Bartell et al. 1999), as well as smaller lakes in central Flogjg
(Bartell et al. 2000). It has also been implemented for site-specific assessments of ecologies
risk posed by chemicals in Lakes Biwa and Suwa, Japan (Naito et al. 2002, 2003). CASM; :
been designed for probabilistic risk estimation using Monte Carlo simulation and character
izes risk as the probability of specified decreases in the annual production of each model

population. It has also been adapted to assess more site-specific risks posed by pesticides ip
littoral ecosystems (i.e., the Littoral Ecosystem Risk Assessment Model (LERAM); Hanra 5,
and Stay 1994). :

28.3.4.3 IFEM

The Integrated Fates and Effects Model (IFEM) is an integration of the toxic effects modg]
Standard Water Column Model (SWACOM) (Bartell et al. 1992) and a polycyclic aromatic
hydrocarbon (PAH) fate model Forecasting Ocean Assimilation Model (FOAM) (Barte]
et al 1981) It combines envxronmental fate processes, bioaccumulation, bioenergetics de

animals; toxic effects and risk are estimated as a function of a dynamic body burden. B’r.
burden reflects the differential uptake, metabolism, and depuration of PAHs. Available PAH
is determined by loading rate and environmental fate processes (dissolution, photolysis,
sorption, volatilization). Fate process rates can be estimated using quantitative structure—
activity relationships developed for PAHs. The data demands of the IFEM have thus far
permitted only assessment of risks posed by naphthalene (Bartell et al. 1988). :

28.4 MODEL SELECTION, ADAPTATION, AND DEVELOPMENT

Because few ecosystem risk assessment models are available (Pastorok et al. 2002), ris
assessors interested in applying ecosystem models will likely be challenged to (1) adapt an
existing model or (2) develop a new model. The following discussion addresses these challenges.

28.4.1 MODEL SELECTION

The first step in selecting an existing model is to identify candidate ecosystem models.
Pastorok and Akgakaya (2002) recommended nine criteria for evaluating the potential
selection and application of ecological models, including ecosystem models, for assessing
risks posed by toxic chemicals. Their recommendations included six technical and three
regulatory criteria:

Technical criteria

1. Model realism and complexity

2. Relevance of ecological effects addressed by the model

3. Flexibility

4. Characterization of uncertainty

5. Degree of development, consistency, and validation
Ease of parameter estimation
Regulatory criteria

1. Acceptance among regulators

2. Credibility

3. Resource efficiency

)
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ABLE 28.1
ief Description of Nine Criteria for Selecting an Ecological Model
r Adaptation to Risk Assessment

Description

fodel realism The model includes ecological structure and processes known to be important in
b determining the dynamics of the ecosystem of interest in the assessment. Model
assumptions are realistic in relation to ecological understanding of the system.
slevance of ecological effects  The kinds of model calculations (e.g., change in biomass, trophic structure,
; energy flow, material cycling) can be easily mapped onto one or more of the
ecosystem-level assessment endpoints.
fexibility The model can be implemented for systems similar to its original derivation
3 without major restructuring or reformulation of governing equations, major
alteration of external forcing functions, or redefining model parameters and
outputs.
terization of uncertainty The model has been developed to explicitly describe and include potential sources
of bias and imprecision in its calculus. Model outputs reflect the uncertainties
propagated through model calculations (e.g., distributions, intervals, fuzzy

i numbers).
ve opment, consistency, The physical manifestation of the model (e.g., spreadsheet, commercial software,
and validation custom program) has become essentially error-free (i.e., “debugged,” verified).

The user is warned of potentially erroneous input values in model applications.
The model has been compared with observations from systems similar to the
ecosystem of interest; model biases have been characterized.

meter estimation Model input values can be estimated from commonly available data. Model

: parameters have clear ecological or toxicological interpretation.

tance The model is frequently used by the regulatory community or the models results

o are routinely accepted as useful by regulators and decision makers.
redibility Previous model applications have been peer-reviewed and accepted by the
: technical community; the model has been widely published and it is generally
familiar to ecological modelers.
esource efficiency The time and effort required to adapt the model to a particular assessment

E does not discourage selection of the model.

e: Summarized from Pastorok, R.A. and Akgakaya, H.R., in Ecological Modeling in Risk Assessment—Chemical

is on Populations, Ecosystems, and Landscapes, R.A. Pastorok, S.M. Bartell, S. Ferson, and L.R. Ginzburg, eds.,
s Publishers, Boca Raton, FL, 2002. With permission.

il

astorok and Akgakaya (2002) discuss each of these reasons for selecting an existing model in
Seful detail. These criteria are briefly annotated in Table 28.1.
‘:‘

.2 MoDEL ADAPTATION AND DEVELOPMENT

L an ecosystem-level assessment is necessary or desired, the risk assessor might be able to
apt an existing model or might be forced to develop a new model. The following sections
ibe some of the key issues to be addressed in either situation. More in-depth treatments
cerning the development of ecological models were providéd in' some of the earlier
ences on ecological modeling (e.g., Patten 1971, 1972; Levin 1974; Hall and Day 1977;
on 1979; Shugart and O’Neill 1979). The detailed instructions for model building and
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apphcatlon provided by these pioneers remain largely relevant today Recent ’ni‘

address model structure, model process, scaling, exposure-response relationships, nece
input data, model results, and model performance.

28.4.2.1 Model Structure

Model structure refers to the ecological entities that are represented in the model. In

governing equation for each state variable. The “boxes” in an ecosystem “box and arrow
flow diagram identify the model state variables and thus model structure. Examples of bio
state variables in an ecosystem model include the numbers, biomass, or energy equivalent o
two or more kinds of organisms. Concentrations of particulate organic matter and dissolv :
inorganic nutrients (e.g., N, P) are examples of abiotic state variables in ecosystem models,
Importantly, the model must contain state variables that correspond to the assessment end'1
points identified in the problem formulation.

In adapting or developing an ecosystem model for risk assessment, the risk assessor mus{
examine the feasibility of incorporating ecological structure germane to the assessment if it ls
not already present. In adapting a model, this might mean adding structure. Adding structure
to an existing model requires an evaluation of compatibility with other state variables already
in the model. In developing a new model, the necessary structure can be designed at the
outset. The challenge will then take the form of deciding how many other state variables (i.e.,
additional structures) are needed to describe the dynamics of the variables corresponding to
endpoints with sufficient accuracy and precision to usefully characterize risk.

28.4.2.2 Governing Equations

In addition to the ecological structure of ecosystem models, structure might also refer to the
mathematical structure, i.e., the calculus of the model. For example, many traditional
ecosystem models have been designed as sets of coupled differential or difference equations
Methods of calculation can range from simple algebra to analytical calculus to sophisticated
schemes for numerical integration. Recent developments in ecosystem modeling have used
numerical algorithms and cellular automata or combinations of automata and various forms
of equations to determine how the values of the state variables change in space or time.
The equations or mathematical formulations that govern the calculations of the mode
should be compatible with the nature of the endpoints. For example, if an endpoint is th¢
biomass (e.g., dry weight, carbon) of a particular populatlon the calculus of the governing
equations should be in the same units. Otherwise, a conversion will be required (e.g., kcals tc
grams carbon) if the model calculations are performed in other units. These kinds o!
conversions can serve as a source of inaccuracy or imprecision in model performance.

28.4.2.3 Scaling

Here scale refers to the spatial and temporal dimensions explicit to the model. In space, tht
model describes some spatial subset (i.e., extent) of the biosphere defined by the selectec
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stem boundaries. The spatial resolution (i.e., grain) within this extent defines the
est spatial unit represented by the model (e.g., 1 m?). Parallel concepts apply in the
poral domain. Temporal scales include the duration (e.g., 1 y) of the model calculations
?.71 he temporal resolution (e.g., daily values of the state variables).

Gour scales are important in adapting or developing an ecosystem model for ecological
- assessment. The ecological scales relevant to the ecological structure(s) of concern are
adamental to useful model application in support of risk characterization. The ecological
le will have been already determined for models being adapted for risk assessment. The
¢ practitioner will have to evaluate the scale of the model in relation to the scales
propriate to the assessment at hand. It might prove feasible to rescale an existing
ydel, depending on the specification of the state variables and formulation of the govern-
jequations. It is generally easier to “scale up” or aggregate structure and process than to
d finer resolution to an existing model. In developing a model, the model builders
n apply basic knowledge of organism life history and previous observations of their
plogy to identify spatial-temporal scales that are appropriate for the assessment and
mpatible with the scales of the exposures. Similar understanding of important physical—
emical processes, augmented by local or regional data, can be used to characterize spatial—
pporal variability in environmental forcing functions that must be integrated with bio-
sical and ecological scales in the selection of an overall scale for a new ecosystem risk
essment model.

The characteristic spatial-temporal scales of the agents must be factored into selecting
gong existing models, adapting a model, or developing a new model. For example, if the
ent is a toxic chemical, the measured or anticipated frequency, magnitude, and duration of
posure can be used to define corresponding temporal scales in the ecosystem model. The
atial extent of an agent can be used to determine a relevant or necessary scale of the
psystem model in order to effectively characterize risk. Clearly, there must be some overlap
ecological and agent scales for the model to be useful.

'he scales of measurement, defined by the number, location, and frequency of samples in a
onitoring program, determine the quality and quantity of data used to implement and
bsequently evaluate the model. Simply stated, as the variability of the measured entity
eases in space or time, more and more frequent samples will be required to accurately and
ecisely quantify it. Scales of measurement also pertain to the agents. As the scales of
asurement become increasingly congruent with the inherent ecological or agent scales,
e statistical variance estimated from the measured values ought to decrease to a minimum,
iereupon additional sampling will not further reduce the variance.

The scales of risk management define the spatial-temporal characteristics of actions that
Sk managers have at their disposal for avoiding, minimizing, or mitigating risks. Manage-
ient scales are also important in quantifying the possible significance of estimated risks.

In adapting or developing an ecosystem model for risk assessment, efforts should be made
D obtain as much overlap as possible among these four scales.

3.4.2.4 Exposure-Response Functions

iVen a model structured appropriately for an assessment, the next most important attribute
0 address is a functional relationship between the model structure representing the endpoints
id the exposures central to the assessment. The model must be able to translate a quanti-
dtive description of the exposures to one or more agents to corresponding changes in the
0deled values of the endpoint state variables so that it is usefiil in characterizing ecological
Sks. Ecological risk assessment can be fairly described as examining the implications of
iCertain exposure-response functions.
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The exposure-response function can assume different forms, depending in part on the
nature of the exposure and the response. For chemicals, exposure-response functions ar
characteristically sigmoidal and monotonic (Figure 23.1). An additional consideration i
developing these functions is the existence of a threshold value, the no observed effeg
concentration (NOEC), which can be incorporated into the overall formulation, sho »"i
conceptually in Figure 23.5. Probit functions (Figure 23.4) have proven useful in defining
exposure-response functions used by ecosystem models for estimating risks posed by to w'
chemicals (e.g., Bartell et al. 2000). 3

Regardless of the exact nature of an exposure-response function, the risk practitiones
should attempt to quantify the uncertainties associated with the function. For example
an exposure-response function for a chemical might be more realistically described by a set of
exposure-response functions that address the variability in response associated with organism
size or age, depending on how such biological structure is represented in the ecosystem mode

28.4.2.5 Data

A perfect ecosystem model cannot inform the risk assessment process if the necessary support:
ing data are not available to perform the model calculations. While this is true for all ecological
models, ecosystem models, being structurally complex by definition, commonly exhibit greater
demands for data to perform the model calculations. The data needs of ecosystem models
mclude values for initial conditions of the mode] state variables, values of the parameters in he

ents. Initial values might also be required for environmental parameters (e.g., light, temperature;
nutrient concentrations) that have been incorporated into the model.
The mathematical formulation of an ecosystem model will define the nature of the param-
eters that determine the dynamics of the state variables. Model parameters can range from
simple linear constant coefficients to highly detailed values that are nonlinear functions of
other biotic state variables and environmental forcing functions (e.g., temperature). Regard
less of their nature, the values of model parameters (e.g., rates of growth, survival, and
reproduction) are necessarily derived from site-specific or more generalized sources of data.
Site-specific monitoring programs can provide the physical-chemical data used by ecosys-
tem models. Comprehensive databases maintained by various agencies (USEPA, USGS,
USDA, etc.) can be used in the absence of monitoring or to augment sparse data. 3
Additional data needs include values of the state variables used to compare with the model
calculations for purposes of model evaluation (validation). The nature of the calculations
performed by the model delineates the data needed to assess model accuracy and precision.
For example, time series of population sizes for key model components might be required to
evaluate model performance. The criteria for assessing model performance (see below)
determine the level of effort necessary to acquire the needed data.
In practice, the often substantial data needs of ecosystem models are met through a collation
of site-specific data, data from similar ecosystems, and data from the technical literature.

28.5 INNOVATIONS IN ECOSYSTEM MODELING '

The preceding discussion emphasized more traditional approaches to ecosystem modeling
for characterizing ecological risk. This modeling construct was developed by ecosystems
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cologists and modelers primarily in the 1970s and has not changed dramatically since then.
Nevertheless, there are opportunities for innovation in the development and application of

cosystem models used in risk assessment. Several possible opportunities are described in the
following sections.

28.5.1 STRUCTURALLY DYNAMIC MODELS

‘ ’ ditional approaches to ecosystem modeling have relied on some initial description of system
structure (e.g., Figure 28.1). Once implemented, the model structure typically does not change
juring the course of execution, except perhaps for some of the modeled state variables becoming
o, i.e., effectively removed from the system. Current ecosystem models seldom, if ever, permit
the addition of new structure (state variables) while the model is running. Given observations
hat systems under stress might become increasingly susceptible to invasion by nonnative species
e.g., zebra mussel, golden mussel, round goby), risk assessors might desire a model construct
hat permits such dynamic addition or deletion of state variables to address this kind of
assessment endpoint. It is entirely feasible to develop operating “rules” whereby modeled
“novel species” can challenge the current model structure to become established and possibly
persist throughout the course of simulation. In the case of invasive species, such rules would
nclude, for example, ecological characteristics of the novel species, corresponding traits of the
nitial model components, and physical-chemical habitat requirements of the invaders.

8.5.2 INTERACTIVE MODELING PLATFORMS

Risk assessors might desire the capability to interactively design and develop an ecosystem
model for a particular risk application. User-friendly modeling platforms (e.g., STELLA) can
provide this capability. These modeling platforms allow the user to (1) efficiently build and
apply models and (2) explore the implications of alternative model formulations in relation to
fisk estimation. In the hands of a trained modeler, this interactive modeling capability can
produce useful results with a minimum investment in time and resources. This same technol-
0gy can, however, lead to fundamental mistakes in model development and application, if the
iser does not have the necessary training or experience in ecosystem modeling.

It is in the interest of risk assessors to advocate the continued development of such
interactive modeling platforms to facilitate the development of ecosystem models for assess-
ng risk. Commensurate with this continued innovation is the need to train risk assessors in

the fundamentals of ecosystem modeling and analysis in order to make full and accurate use
of this technology.

i’._ .5.3 NETwork-EnaABLED ECOSYSTEM MODELS

cosystem modelers or modeling centers can make ecosystem models accessible for use via
the Internet. In addition to downloading existing models, network-enabled modeling capabil-
ities would permit the assessor to actually execute the selected model on some remote server.
One advantage of this service would be to make models that require substantial computa-

onal power (i.e., multiple, parallel processors; “super-computers™) accessible to assessors
Who might lack access to these kinds of machines.
28.5.4  ECOSYSTEM ANIMATION

Continued advances in computational power and graphic software make it increasingly
Possible to present the results of ecosystem models as animated sequences of model re-
Sults—either in space, time, or both. Inspection of such animated model output by the user




)

428 Ecological Risk Assessmen|

can help identify interesting patterns in system response that are not obvious from looking af
a number of tables or graphs. Mathematical techniques can be used to evaluate identify
visual patterns to determine if they are numerically “real” or just perceptions. 8
Substantial amounts of information can be communicated efficiently. through animation g
ecosystem model results. Animation might more effectively enter the large volumes of resy] S
into risk management and decision making. __
These opportunities for innovation in ecosystem risk assessment modeling are being
realized to some extent through an integrated modeling and assessment effort involving 1?
European countries (Brack et al. 2005). The MODELKEY project comprises an interdiscin
linary approach to developing interactive, interlinked environmental fate and effects models
(aquatic food web/ecosystem models) for characterizing risks posed by contaminants in
freshwater and marine systems. The models are designed to be integrated with a user-friendly
decision support system. The decision-support system will apply neural network and
Geographical Information System (GIS)-based analysis of predicted effects and composite.
risk indices to evaluate risks, identify sources of contamination, and set priorities among
contaminated sites. The developed models will be verified in case studies that focus on
applications in the Mediterranean Sea, as well as selected river basins in western and
central Europe. i
As another example of future modeling approaches, Sydelko et al. (2001) describe plans for
a dynamic information modeling architecture that permits efficient development of object-
oriented (OO) simulations. This approach was used to develop an integrated dynamic
landscape analysis and modeling system (OO-IDLAMS). The OO-IDLAMS was derived
initially as a prototype resource conservation model to inform decision makers in natural
resources planning and ecosystem management. Sydelko et al. (2001) emphasize the potential
for integrating the OO-IDLAMS with ecological models of chemical uptake and effects in
order to forecast the magnitude and extent of contamination and associated ecosystem risk.

28.6 ECOSYSTEM MODELS, RISK ASSESSMENT, AND DECISION MAKING

Ecosystem models have numerous possible roles in environmental decision making and man-
agement, as is briefly illustrated in this section. In the first case, an ecosystem model was used to -
both explore the implications of a test endpoint that is commonly used for screening benchmarks
and quality criteria. In the second, the same model was used with the results of several
microcosm and mesocosm tests for risks to ecosystems with different structures.

28.6.1 MobkL Resurts AND NOECs

Recently, efforts have been made to understand the results of ecosystem models in the context

of more traditional or familiar ecological benchmarks. Naito et al. (2002) used the CASM to
estimate risks posed by seven quite different chemicals in Lake Suwa, Japan. The chemicals
included insecticides, herbicides, organic contaminants, and one trace element. These inves-
tigators used the model to calculate changes in selected model populations compared to a
reference simulation for various exposure scenarios. In addition, the model was used to
estimate the probabilities of observing selected percentage decreases (or increases) in produc-
tion for these same populations. However, a unique aspect of this risk assessment centered on
“calibrating” the CASM results to chronic NOECs for zooplankton reported for these
chemicals. The implicit hypothesis was that some constant degree of modeled effect on
zooplankton would correspond to the zooplankton NOECs across this wide range of chem-
icals. Analysis of the model results for these chemicals demonstrated that the modeled end-
point of a 20% reduction in total annual zooplankton biomass (designated as the “BR20”)
correlated well with the NOECs (Figure 28.4).
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' FIGURE 28.4 Correlations between Comprehensive Aquatic Systems Model (CASM)-modeled end-
point of a 20% reduction in total annual zooplankton biomass (designated as the “BR20”") and estimates
of no observed effect concentrations (NOECs) for several toxic chemicals. (Redrawn from Naito et al.

2003. With permission.)

. This result is important for several reasons. First, calibrating the model to more familiar
toxicological endpoints provides a tool for estimating the zooplankton NOEC for chemicals
that can be assessed using CASM, but for which NOECs have not yet been developed.
Second, the result demonstrates the relevance and reliability of the CASM in assessing risks
"jacross a considerable range of chemicals with different patterns of exposure, modes of
‘toxicity, and species sensitivities. Finally, the correlation of the zooplankton BR20 with the
NOECs further supports previous claims (i.e., Bartell et al. 1992) that the underlying stress
syndrome used in CASM (and SWACOM) is biased towards conservative (i.e., pessimistic)
estimates of risk. That is, an exposure concentration corresponding to no observed effect in
laboratory assays produces a 20% reduction in total annual production in the model. The
model has a 20% bias towards overestimating risk compared to laboratory assay results.
Furthermore, this bias appears consistent across a wide range of chemicals and NOECs. The
correlation of the NOECs with the CASM BR20s also provides a decision maker with a better
understanding and ability to interpret the ecosystem model results in relation to more
traditional species-level endpoints.
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128.6.2 ATRAZINE LEVELS OF CONCERN

The previous examples and discussion hint at the use of ec’osystém models in risk management
- and decision making. The following discussion describes the use of CASM in determining




430 Ecological Risk Assessme _»

acceptable levels of atrazine in surface waters subject to agricultural runoff. CASM ws; :
implemented to represent, in a generalized manner (i.e., generic application), the food we b
structure and temporal patterns of production characteristic of second- and third-order Mid-
western streams. A CASM reference simulation was developed using a collation of ecologica]
and environmental data from Midwestern streams. '

The novel application of CASM in this example lies in using the results of the generie
stream ecosystem model to discriminate among the severity of measured effects in micro- and
mesocosm studies of atrazine. In all, 25 separate studies were evaluated in relation to 77
reported effects (endpoints) on aquatic plants. Of these, 24 results were from tests on ponds or
lakes, 20 on artificial streams, and 33 were microcosm tests. Typically, 1 to 3 concentrationg.
of atrazine were tested in these studies, each with a single application to the test system at
initiation. Atrazine concentrations were often kept constant for a variable duration period.
Eight effects on plants were recorded on macrophytes, 29 on periphyton, and 40 on phyto-
plankton. Brock et al. (2000) analyzed a majority of the study results and quantified them as
follows: 1 = no effect; 2 = slight effect; 3 = significant effect followed by return to contro
levels within 56 d; 4 = significant effect without return to control levels during an obserya-
tion period of less than 56 d; 5 = significant effect without return to control levels for more
than 56 d. Several studies not analyzed by Brock, but considered in this analysis, were scored
with the same methods. i

The 77 effect scores representing the results from the micro- and mesocosm studies were.
plotted against the study-specific test concentrations and exposure durations in Figure 28.5,
The effects on plants observed in micro- and mesocosm studies generally became more severe
with increasing exposure magnitude and duration. 1

The average daily percent difference in modeled plant community similarity between the
CASM reference simulation and the simulated effects of atrazine was the principle model
result used in evaluating the results of the micro- and mesocosm studies. Corresponding
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FIGURE 28.5 Concentration-duration interpolations of Comprehensive Aquatic Systems Model
(CASM) simulations that produce a 5% change in average total producer community similarity.
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relative changes in modeled biomass of phytoplankton, periphyton, and macrophytes were
also examined. Based on the results of numerous CASM simulations that used exposure
scenarios of varying atrazine concentrations and exposure durations, a decrease of 5% in
average community similarity was found to discriminate the studies by Brock et al. with
scores of 1 and 2 from the studies scored between 3 and 5 (Figure 28.5). The 5% average
deviation in producer community similarity will be used to evaluate the results of field studies
that monitor atrazine concentrations in surface waters. If the exposure profile developed from
fhe monitoring results produces an average daily deviation in community similarity that is 5%
or greater when analyzed using the generic CASM, the study site may become subject to
additional monitoring or remediation. If the resulting modeled average deviation in producer
community similarity is less than 5%, monitoring will simply continue.

- Importantly, CASM was not used to forecast the site-specific effects anticipated for varying
gxposures to atrazine. Rather, the generic CASM was used as an ecosystem-modeling tool to
issess the potential effects of atrazine in relation to observed responses in field and laboratory
tudies.

S -

28.7 MODELS OR MODELERS

This chapter has discussed as much about the process of ecological modeling as it has about
particular ecosystem models. Unarguably, the development of user-friendly, off-the-shelf,
and readily applied ecosystem risk assessment models constitutes a worthwhile goal for model
makers and produces desirable end products for model users. Progress in the previously
utlined technical areas will generate increasingly sophisticated, readily accessible, and “user-
seductive” ecosystem risk assessment models. Future assessment models will undoubtedly
eature highly interactive and increasingly intelligent user interfaces. Model calculations will
be completed in seconds on ever-increasingly fast computers and the rate-limiting step will
ecome the user’s ability to summarize, understand, interpret, and apply the voluminous
model outputs in risk assessment, management, and decision making. Useful summarization
ind effective presentation of model results will be facilitated by advances in data visualization
methods.

- Despite a reasonable technological optimism, continuing challenges in improving quanti-
ative ecosystem understanding (e.g., strange attractors, chaos) and the requirements of
inique and novel assessments (e.g., genetically engineered organisms, invasive species, habitat
egradation, landscape fragmentation) cannot overemphasize the importance of the ongoing
icientific training of successive generations of ecosystem modelers. The technical skills,
raining, and experience of the “people behind the models” will continue to determine the
Success of ecosystem modeling in supporting ecological risk assessment and the intelligent
management of valued natural resources.

- For performing an evaluation of model realism and relevance, the categories of individual-
ased, population, ecosystem, and landscape provide a convenient (but somewhat arbitrary)
ouping of ecological models. Models within each group reflect the ecological phenomena or

ics of interest from different perspectives in quantitative ecology (Bartell et al. 2003).
Associated with each perspective and resulting modeling approach are hypotheses concerning
Simplifying assumptions that facilitate the specification of model structure in relation to the
*Cological topic of interest. However, the ecologists, modelers, and observers are each
exploring ecological complexity in the same natural world. Simplifying assumptions does
0t simplify nature. For example, the carrying capacity, K, in the logistic model simply
€presents all of the biotic and abiotic constraints on population size in a single aggregate
Parameter. In a real sense, the logistic model could be classified as a simple ecosystem model.
the more structurally complex system models such as AQUATOX and CASM attempt to

=4
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explicitly model many of the biotic and abiotic interactions that are believed to influence he
production dynamics of aquatic populations included in these models. These structurally
more complex models can justifiably be called population models. One important implicatiop
of this recognition is that a convenient categorization of ecological models does not imply
that the measurable world can be similarly decomposed and categorized. Apart from evaly.
ating the efficacy of existing models for assessing risks (e.g., Table 28.1), a major ang
continuing challenge lies in determining the necessary and sufficient structures (i.e., in te ms
of complexity and scale) of ecological models that provide risk estimates of known accuracy
and precision. 5

The arbitrariness inherent in developing and classifying ecological models can lead to
fatuous statements concerning the relative merit of different modeling approaches for assess.
ing ecological risks. Models comparatively simpler in structure (e. g., demographic populatio n
models) might initially appear “better” for assessing risks than more structurally complex
ecosystem models even though the demographic models are less realistic according to the

“particle model” for describing electromagnetic radiation. Such assertions are often framed in
the context of model validation, i.e., simpler models might appear more easily validated than
complex models. In other words, it would seem that accurately predicting the value of one or
two state variables is a priori more likely than obtaining predictions of similar accuracy for 10
or 20 state variables. However, probability theory and modeling experience remind us that
validating models, like proving hypotheses, cannot be done in any absolute or meaningfully
relative sense. All possible future model/data comparisons cannot be made for any of the
modeling approaches. No nonarbitrary baseline for comparing the relative validity of
the different modeling approaches exists. . 4

Selection and development of models for assessing ecological risks would benefit from
focusing on the relative strengths and limitations of alternative modeling approaches. Evalu-
ations of model realism, endpoint relevance, flexibility, ease of use, and other characteristics
help to guide users in their choice of specific models for further development and fo
application to current risk assessment problems. Future efforts in ecological risk modelin g
should focus on identifying the necessary model complexity required to achieve sufficientl y

decision making. Working forwards from continuing advances in ecosystem understandin:
can help inform managers on scientifically defensible minimum model structures. Ecosystem
models for risk assessment should be sufficiently complex, but no more so. '




