27 Population Modeling
| Lawrence W. Barnthouse

| significant environmental decisions could be based on predicted or observed effects of
icals or other agents on organisms, there would be no need for this chapter. However,
e are many important decisions for which knowledge of organism-level effects simply is
enough. Some species may, because of their life history or because of their greatly reduced
ndance, be more at risk than others, given the same sensitivity of individuals. Mortality to
ain individuals is unavoidable, in which case risk managers may be interested in the
sunt of mortality (or growth reduction) that can be tolerated by the exposed species. It
y 'be necessary to know whether the combined effects of agents affecting several different
stages may reduce the abundance of populations or lead to increased risk of extinction. It
 be important to forecast the rate of recovery of populations following an accident or a
edial action.

he toxicity tests and extrapolation models discussed in Chapter 24 and Chapter 26 are
ifficient for addressing these problems. From a population viewpoint, the death or
airment of an organism is meaningless, because most organisms die after brief lives (on
n time scale) and few organisms achieve their full reproductive potential or maximum
wth. Ecologists have long known that natural populations of many organisms frequently
subjected to extreme environmental variations that cause mass mortalities, and many
ies are composed of isolated pockets of organisms that occasionally become extinct, and
ater reestablished. Modern ecological theory views disturbance and instability as normal,
e constant conditions observed in laboratory experiments to be highly unrealistic.
fany questions of interest in risk assessment relate to effects on the abundance, produc-
or persistence of populations. Responses of populations cannot be predicted from
ity tests alone. The response of a fish population, for example, to a contaminant exposure
depend on the spatial pattern of exposure as related to the distribution of individuals in time
Space, on the magnitude of other impacts that are imposed (including especially harvesting
fishermen), and the inherent capacity of the population to “‘compensate” or to evolve in
ponse to exposure. The response of a soil invertebrate population periodically exposed to
icides depends not only on spatial patterns of exposure and dose-response relationships,
also on the reproductive capacity of the population and on availability of nearby sources of
ligrants that can replace organisms killed by the exposure.

ferest among both ecotoxicologists and risk assessors in techniques for predicting re-
nses of populations to chemical exposures has grown rapidly in recent years. Between 1980
1990, for example, the journal Environmental Toxicology and Chemistry published only
e papers dealing with effects of chemicals on populations. This same journal published
e than 50 such papers between 1996 and 2005. The increase reflects both renewed
dreness on the part of scientists and management agencies that population-level effects
important and can be quantified, and the emergence of new techniques for quantifying
ulation dynamics, many drawn from the emerging field of conservation biology.
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For small, short-lived species (e.g., microbes, cladocerans, and some other small art?
pods), effects of chemicals on critical population parameters can be measured directly ysj
laboratory experiments. However, these organisms are unrepresentative of the great majo
of populations of interest in ecological risk assessment. In a few rare cases, effect
chemicals on the same parameters have been estimated from long-term field studies (|
Barnthouse et al. 2003). However, most population-level ecological risk assessments have 3
will continue to involve using mathematical models of populations to link organism-Je:
experimental data to population-level responses. The objective of this chapter is to show how
such models can be developed and applied. F:

The problem of quantifying population-level responses to death or impairment of orgag

defining the effects of harvesting, habitat modification, and disease on the abundance ap
stability of exploited populations. Recently, conservation biologists have developed nove
methods for quantifying the effects of environmental variability, habitat fragmentation, ang
reduced population sizes on the persistence of rare and endangered species. The methods use
by resource managers and conservation biologists provide a useful frame of reference
assessments of other sources of stress, including toxic chemicals.

This chapter provides basic definitions, briefly describes some of the models that are

population biology are advised to consult the excellent textbooks and reviews that
available. Most modern undergraduate-level ecology textbooks (e.g., Begon et al. 1
Krebs 2002) explain the fundamentals of population analysis. However, many of
most readable and thorough accounts are older. Among these, the most widely cited (a
most frequently consulted by the author of this chapter) is the classic text by Andrewartha
and Birch (1954). The texts of choice for fish population studies are Hilborn and Walters
(1992) and Quinn and Deriso (1999); Bolen and Robinson (2002) provide a good genera
discussion of wildlife population biology. An overview of the new subdiscipline of “metap¢
pulation biology,” which is of substantial relevance to ecological risk assessment, is provi
by Hanski and Gilpin (1996). For the mathematically inclined, Caswell (2001) provides @
thorough exposition of the theory of matrix population models. Readers interested in devt
oping computer simulation models of populations should consult Swartzman and Kaluzny
(1987; unfortunately now out of print), or Jorgensen and Bendoriccio (2001). ’

Other authors have also written about population-level ecological risk assessment
methods. Particularly noteworthy are the books by Newman (2001) and Pastorok et al
(2002). These authors provide useful alternative perspectives concerning issues addressed it
this chapter. .

One significant topic that is not discussed at all in this chapter is population genetics:
Historically, the two principal branches of population biology, demography and population
genetics, were intimately related, and many of the pioneers in theoretical population biology
made fundamental contributions to both. Some, but not all, of the modeling approaches
discussed in this chapter are used in population genetics as well as demography. Impacts 0f
chemicals on the genetic composition and fitness of populations are topics that.have been
discussed in the ecotoxicological literature (Forbes 1999; Newman 2001); however, genetié
impacts on populations have not yet been an issue in any major environmental controversy
and no guidance has been developed concerning how risk assessments should or could
address these impacts. Until ecological risk assessments begin to more routinely considel
population genetics, it seems premature to include the topic in this chapter. Thus, the scope of
this chapter is limited to demography.
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71 BASIC CONCEPTS AND DEFINITIONS

e fundamental objective of population biology is to infer characteristics of groups of organ-

a5 (i.e., the populations) from organismal characteristics. The population characteristics of
erest mclude total numbers or biomass, rate of population growth or decline, age, size, sex, or
notypic composition of the population, and the probability that the populatlon will persist
o the future. Only a subset of these characteristics is likely to be important in any smgle
sessment. Managers of exploited populations may be interested in the number of organisms
ai able to be harvested; conservationists may be interested in the probability of extinction of a
ulauon of a given size. These population characteristics are simply collective expressions
fihe state and fate of constituent organisms, such as reproduction rates, growth and develop-
ent rates, and probabilities of death. The individual characteristics are, in turn, governed by
jinnate processes such as development and senescence; (2) the effects of the physical environ-
3 t (3) interactions with other organisms; and (4) deliberate or unintentional actions by man.
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spulation studies address a variety of endpoints of interest in risk assessment. The most
asic of these are the endpoints traditionally used in management of exploited populations:
; i population density or biomass, age or size distribution, and sustainable rate of harvest.
| resource management, models relate these endpoints to management actions such as
arvest quotas, size limits, or harvest season lengths. Due to concerns about the conservation
endangered species, population biologists have recently formulated new models that
ntain environmental or demographic stochasticity and spatial heterogeneity, to address
nts related to persistence of populations in variable environments. These models are
to estimate frequencies or probabilities of extinction within a given time period or
ed time to extinction, as functions of population size, size of habitat required, or degree
habitat fragmentation.
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1.2 ImpLicaTIONS OF LiFe HISTORY FOR POPULATION-LEVEL ECOLOGICAL RisK ASSESSMENT

¢ some species inherently more vulnerable to environmental stress because of their life
-»‘ij Are some life stages more important than others to the survival of a population? To
s, few ecotoxicologists have attempted to address the influence of life history on the
erabxhty of populations to toxic chemicals. Exceptions include Barnthouse et al. (1990),
0 investigated effects of chemical exposures on two fish species with contrasting life
Stories and harvesting patterns; Spromberg and Birge (2005), who performed a similar
estigation of five general fish life history types; and Calow et al. (1997), who developed a
tative framework for relating life history traits to population-level effects of chemical
yosures. However, the influence of various life history traits on population growth rates
85 a major topic of theoretical research during the 1960s and 1970s (see review by Stearns
7). Both theoretical analysis and management experience have shown that long-lived
ffebrates such as large mammals, predatory birds, and whales are more sensitive to
rtality imposed on adults than are short-lived, highly fecund organisms such as quail
); however, gen d anchovies. Conversely, short-lived species are often vulnerable to short-term catastrophes
nental controvers it affect critical life stages. Populations in which survival or reproduction are strongly
s should or cot ated to the density or abundance of the population should, on theoretical grounds, be less
routinely co & nerable than populations with a low degree of density-dependence. Qualitatively, it seems
Thus, the scopes ar that the response of a population to a toxic chemical is influenced by the preexisting
’ terns of natural environmental variability, the age-specific survival and reproduction of
‘Organisms, and the intensity and duration of exposure.
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27.1.3 REPRESENTATION AND PROPAGATION OF UNCERTAINTY

Chapter 5 discusses a variety of sources of uncertainty that are of interest in ecologlcal
assessment. Sources potentially important for population analysis include (1) environme
variability in time and space; (2) variations in sensitivity among individuals and life sta
and (3) stochastic birth and death processes. Interindividual and inter-life-stage variability;;
discussed in Chapter 26. Stochastic birth and death result from the fact that each organism
has an indeterminate life span, even if the average life span for the population can be very
precisely estimated. In practice, random birth and death processes, usually termed “demgos
graphic stochasticity,” are important only in small populations (e.g., 50 individuals or fewe
Even for small populations, Goodman (1987) showed that this source of uncertamty is
usually quite small compared to environmental variability. ;

Temporal environmental variability is readily incorporated in population models. Bo h
periodic and stochastic variations have been studied. The principal mathematical tools
available include time series analysis and stochastic modeling. These approaches may be
used to quantify environmental variability (e.g., to estimate a periodic function of so'
important driving variable such as temperature or rainfall), or to estimate probability distri-
butions for temporally varying population parameters (e.g., mortality rates). Many of thesg
techniques are mathematically complex and well beyond the scope of this book. Time series
analysis is widely used in economics and engineering as well as in ecology; Brockwell and
Davis (2003) discuss many of the widely used procedures and software packages. Stochastx
population models are discussed by Caswell (2001), and book-length treatments have been:
written by Nisbet and Gurney (1982) and Tuljapurkar (1990). The problem of fitting sto=
chastic population models to time series data is still an active area of research in populano
biology, so none of the available textbooks provides a fully up-to-date treatment. For th
purpose of typical risk assessments, however, theoretical elegance is often unnecessary:
Techniques for using Monte Carlo modeling population-level consequences of environme
variability and parameter uncertainty have been available for more than 20 y (e.g., O’Neill
et al. 1982; Barnthouse et al. 1990; Bartell et al. 1992). The popular RAMAS population and
ecosystem modeling software (available from Applied Biomathematics, Setaucket, New:
York, web address http://www.RAMAS.com/) was specifically designed for this purpose. =

Spatial variability can now readily be addressed using metapopulation models, i.e., model
in which populations are represented as sets of semi-isolated subpopulations, each with “l
potentially different rates of reproduction and mortahty that are linked through the prooesse
of immigration and emigration. Although the term “metapopulation” was first used in the
1960s (Levins 1969), most of the methods used to model metapopulations have been devel-
oped since 1990. As noted above, Hanski and Gilpin (1996) provide a good introduction to
the theory of metapopulations. The most widely used software for metapopulation modeling’
is the VORTEX model described by Lacy (1993); however, a metapopulation version of
RAMAS is also available. A related class of models, termed “spatially explicit” models
represents populations either as groups of organisms or as individual organisms interacting
on a spatial grid (e.g., Liu 1993; Turner et al. 1994). These techniques provide entirely new
ways of quantifying ecological risks of spatially heterogenous chemical exposures; an example
is discussed later in this chapter. 1

27.1.4 Density DEPENDENCE

Population regulation has been a fundamental problem in population biology. since its:
inception. What prevents populations with high reproductive rates from increasing without:
bounds? How do fish and wildlife populations persist in the face of intensive exploitation by
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qumans? The simplest answer to these questions is that in many, and perhaps in most or all,
populations, either mortality, reproduction, or both change with the size of the population.

When numbers are high, mortality increases and reproduction decreases; when numbers are
ow, mortality decreases and reproduction increases. Many empirical studies have documen-

st in ecological risk
e (1) environmenta]

aals and .hfe. stag ed effects of density on growth or reproduction of organisms; the widespread existence of
stage variabili ensity-dependence at the level of organisms is beyond doubt. However, the importance of
that each org: hese mechanisms for stabilizing populations and ensuring their persistence in variable
ulation can ‘be Vv .nvironments is still widely debated. Rose et al. (2001) discussed the difficulty of quantifying
ﬂl'y'termed d ffects of density-dependence in fish, the taxonomic group that has been the most intensively
dividuals or fe studied. In spite of the fact that harvested populations of fish could not sustain themselves if

e of uncertainty js survival or reproduction was not strongly density-dependent, it continues to be very difficult
. e o detect and quantify density-dependence in specific fish populations. In addition, popula-
ation models. Boh ions of many types of organisms appear to be stabilized through dispersal of organisms
mathematical tools between habitat patches, so that the population as a whole may persist indefinitely
1pproaghes may bg sven though the subpopulations inhabiting individual patches frequently become extinct
> function of some den Boer 1968; Wu and Loucks 1995). Regardless of the mechanisms involved, it seems
¢ probability distri lear that some form of density-dependence, acting either within populations or between
nteracting subpopulations, is necessary to ensure the persistence of species (Murdoch 1994;
Lande et al. 2002).
It is not always necessary to build density-dependence into population models used for
management or risk assessment. Fish and wildlife managers have been reasonably successful
with density-independent models, provided that the prediction horizon is short and that the
population changes modeled are relatively small. For long-term predictions, however, explicit
ncorporation of density-dependence is usually necessary to provide realistic simulations.
Projections from purely density-independent models inevitably grow either to infinite size
or decline to zero, even without the imposition of anthropogenic agents such as harvesting or

oxic chemicals.
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7.2 APPROACHES TO POPULATION ANALYSIS

A variety of approaches to population analysis have been developed over the past several
fecades. This section provides an overview of the principal methods, with an emphasis on
heir conceptual relationships and past applications. Representative case studies involving
foxic chemicals are presented in Section 27.3.

27.2.1 PoTENTIAL POPULATION GROWTH RATE

[he simplest approach to population analysis is quantification of the population growth rate.
The theory in its present form was developed by Lotka (1924), Fisher (1930), and Cole (1954).
Before the 1960s, analysis of the relationships between life history traits and population
srowth was the only approach to population dynamics used outside fisheries management.
fhe approach requires only a compilation of (1) the fraction of organisms surviving from one
age to the next, and (2) the average number of offspring of an organism of a given age. Define
: as the fraction of organisms surviving from birth to age x, and m, as the average number of
bffspring produced by an organism of age x. Suppose the maximum age or organisms in the
Opulation is » years. If /; and m, are constant, these parameters uniquely determine the
clationship between reproduction, mortality, longevity, and population growth. This rela-
lonship is mathematically described by Equation 27.1:
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n
E e lm =
x=]

“geometric rate of increase.” In this chapter it will be termed the instantaneous rate of
population change. If 7 is greater than 0, the population will increase indefinitely. If 7 is ]ess
than 0, the population will decline toward extinction, and if r is exactly 0 it will remajy
unchanged. It can be shown that if undisturbed, the age composition of this population
converge to a “stable age distribution” in which the fraction of organisms in each age clas
the same from each generation to the next. Once this state is achieved, both the population ag
a whole and the number of organisms in each age class will grow (or shrink) exponentially
with time: :

= Noe" 272

where N, = population time at time ¢, and N, = population size at time 0.
Equation 27.1 and Equation 27.2 are often expressed in alternative forms:

S A eme=1 (273)
Ny = No A" @74)

where A = ¢" = the finite rate of populatlon change.

r to changes in fecundity or mortality. Mertz (1971) showed that because of its ve"-
low reproductive rate, the California condor population was extremely vulnerable to in-
creased mortality of adults due to hunting. Mertz also concluded that management actions
designed to increase reproductive success in this population were unlikely to improve
prospects for recovery. Unfortunately, Mertz’s prediction proved correct and the California
condor became extinct in the wild about 10 y later. During the 1980s, numerous authors
used similar methods to assess the viability of northern spotted owl (Dawson et al. 1987
Lande 1988). E

In ecotoxicology, the potential population growth rate approach is now frequently —oi
to interpret results of chronic toxicity tests performed using cladocerans and other small;
short-lived species (e.g., Daniels and Allan 1981; Gentile et al. 1983; Meyer et al. 1986
Walthall and Stark 1997; Kuhn et al. 2001; Salice and Miller 2003). Measurements of daily
survival and reproduction obtained from these tests are sufficient to obtain estimates of £
Changes in r resulting from exposure to toxicants can be used as a relative index of chroni¢
effects on populations. Although the calculated values of r cannot be directly extrapolated
to the field, this approach to test data interpretation has the advantage of combining
information on survival and reproduction into a single index. Forbes and Calow (1999'
compiled a list of 41 such studies, including a total of 28 species and 44 chemicals. I
addition to being used to assess risks to populations of the tested species, test-derived
estimates of r for multiple species have been proposed as a potential method for deriving
water quality criteria that protect aquatic communities (Forbes et al. 2001; discussed later ifl
this chapter).
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( 5 7.2.2  PROJECTION MATRICES

"" -structured or stage-structured projection matrices are an important extension of the
stential population growth rate approach. The simplest matrix model is the linear “Leslie
ix”’ (Leslie 1945; Caswell 2001). The Leslie matrix contains exactly the same information
: _-. potential population growth rate model, but the information is expressed in matrix
rm. The change in abundance of each population in time can be represented by the matrix
uation:

ion 27.1 sum to 1.

instantaneous rate.
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¥

here N(7) and N(7—1) are vectors containing the numbers of organisms in each age class
I, - - »Nx), and L is the matrix defined by
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here 5, = age-specific probability of surviving from one time interval to the next, and f; =
rerage fecundity of an organisms at age k.
The Leslie matrix can also be expressed in a graphical form (Figure 27.1a) in which the
— - fferent age classes are depicted as nodes and the survival and reproduction parameters are
ctlgn ofa pop}llfl spicted as arrows connecting the nodes.
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N(#) = L' N(0) 7.7)

phere N(0) = age distribution vector at time 0, and L' = the matrix L raised to the power .
Leslie (1945) showed that any population growing according to Equation 27.7 will con-
°rge to a stable age distribution, after which it will grow according to

10w frequently use h N(7) = A" N(0) (27.8)
ns and other smal :
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he parameter A, which in matrix algebra is termed the “dominant eigenvalue” of the matrix L,
the same finite rate of population change that appears in Equation 27.3 and Equation 27.4.
Alternatively, a matrix of life stages and stage transitions (as opposed to ages and age
ansitions) can be constructed. Caswell (2001) presents a detailed discussion of the math-
natics of stage-classified models. In addition to representing survival and reproduction

itage of com tes, the coefficients of a stage-classified model can represent probabilities of transition
and Calov_v a Om one size class or life stage to the next.

d 44 chemi or example, in a stage-based alternative to the Leslie matrix, an organism alive during

FROGIES, test-deg : ly time step might either remain in the same stage or size class during the next time step

nethod for derivl transition to the next class. The transition matrix for a model of such as population

1; discussed la: A B b
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Py, F B Fy

Gy P 0 0

0 G P 0 '
A= . i 0 (27

0 0 G
0 0 0 Gi1 Pk
In this matrix, the elements along the diagonal (P;) are probabilities that an organisy
will survive and remain in the same class; elements along the subdiagonal (G)) are prok
abilities that an organism will survive and transition to the next class. A graphica

version of a stage-based model is provided in Figure 27.1b. The projection equation for thig
matrix is i

N(1) = A" N(0) (27.{

Ecological examples of stage-based models include Sinko and Streifer (1967, 1969), Taylo;
(1979), Law (1983), Law and Edley (1990), De Roos et al. (1992), and many other papers ci
by Caswell (2001). These models appear especially useful for plants and invertebrates, w

have complex life cycles in which population dynamics are more strongly influenced by siz
and developmental stage than by age. Emlen and Pikitch (1989) used stage-classified mo 3
of generalized vertebrate populations to analyze the sensitivity of different types of ve
brate life cycle to mortality imposed on different stages. Munns et al. (1997) developed a

P
(b) 2 P,

FIGURE 27.1 Life cycle graphs corresponding to age-based (Leslie) and stage-based projection models:
(a) In the age-based model, organisms surviving at each time step transition to the next age group- 8 C
organisms survive beyond age group 3. (b) In the stage-based model, organisms surviving at each ti i
step may either transition to the next stage or stay in the same stage. In both models, reproducti
occurs immediately following the age-stage transition.
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‘ge-based model of a mummichog population exposed to dioxin and polychlorinated
phenyls (PCBs).

The relative influence of different life history characteristics on the population growth can
s calculated using a property termed “elasticity” (deKroon et al. 1986; Caswell 2001).

asncxty is a measure of the proportional sensitivity of A to each element of the population
ansition matrix (a;):

» that an organisp eij = (ajj/A)(OA [ Day) (27.11)
onal (G;) are p e
class. A graph he elasticities of all the elements (a;) of a population projection matrix sum to 1.0.

on equation for this sromberg and Birge (2005) and Forbes et al. (2001) used the elasticity index to compare
; e relative influence of different life history characteristics on the population growth rates of
ecies with different life history strategies.

For a population that is not at a stable age distribution, Equation 27.7 or Equation 27.10
n be used to predxct the abundance and age distribution of the population over the next few
me intervals, given any initial age distribution. Otherwise, as long as the coefficients of the
atrices L or A are viewed as constant parameters, the matrix projection approach is
sentially equivalent to the population growth rate approach. The real power of the matrix
r&sentatxon of population dynamics is its flexibility. The coefficients of L or A can be
ge-classified mo ewed not as constants, but as random variables or functions of environmental parameters.
These modifications permit entirely new types of analyses, many of substantial value for
sk assessment. In the strictly linear and deterministic models discussed so far, the only
idpoint that can be addressed is the future trend of abundance: will the population increase
t decline in the future, and how sensitive is the rate of increase or decline to changes in life
story parameters? Modification of the matrix approach in the ways described below permits
sessment of any endpoint for which an operational definition can be formulated.

The remainder of this section deals with matrix models in which the elements are variables
ther than constants. One straightforward modification is to make the coefficients random
riables. Stochastic matrix models are generalizations of age- or stage-based models, in
hich one or more of the matrix coefficients are assumed to be a random variable. In very
all populations, substantial fluctuations in abundance, and even extinction, can occur
iply because of the random nature of birth and death processes. The most important
plication of these models for ecological risk assessment is in quantifying the probability
extinction, either due to strictly demographic and environmental stochasticity or due to
ress (e.g., excessive harvesting, toxic chemical exposure, or periodic catastrophic mortality)
p sed on stochastically varying populations.

he theoretical literature on stochastic matrix models emphasizes the use of analytical
at thematics to obtain genera] results. In applications to specific populations, however,
merical simulations using Monte Carlo methods are usually adequate and are much easier
perform. Barnthouse et al. (1990) used Monte Carlo simulation to evaluate the combined
fects of environmental variability and uncertainty of chemical toxicity on the abundance
d risk of extinction of two fish populations. Snell and Serra (2000) describe a similar
proach to quantify impacts of chemical exposures on rotifer populations influenced by
(5. t-term environmental variability and episodic catastrophes. Software designed for easy
velopment of stochastic matrix models is now readily available; however, in many cases

1967, 1969), Taylo
iy other papers
nvertebrates, w]

(1997) developed
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ed projection cial software is not needed. Equation 27.3 and Equation 27.5 can be readily unplemented
\e next age gro La spreadsheet, and Monte Carlo analysis of spreadsheets can be easily performed using
jurviving at eact d-on programs such as Crystal Ball®.

models, ferd Another common modification of the basic matrix model is to make the coefficients

isity-dependent, i.e., to make one or more of the vital rates a function of the number of
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individuals either in the entire population or in some of the age classes. The purpose ¢
incorporating density-dependence is to account for the fact that, in spite of fluctuationg §
abundance, populations in nature are always bounded within limits (Section 27.1.4). '
As a practical matter, explicit incorporation of density-dependence in population mod
often necessary to obtain realistic population projections. Inspection of Equation
Equation 27.4, Equation 27.8, and Equation 27.10 shows why. For deterministic mo
unless r is exactly 0 (A exactly 1), the model population must either grow without boun
decline to zero. Inclusion of stochasticity does not alter this behavior. Given enough time
density-independent model population will either grow to infinite size or become extinct. E
this reason, most models intended to simulate population behavior over more than
generation incorporate density-dependence. Two common functions for density-dependen
survival (s) are the Beverton—Holt function: ’

s=c1/(1+can) (27,"_
where ¢,, c; = constant parameters, and n = population size; and the Ricker function:

s =ae "

where @, B = constant parameters. :

These functions are introduced here simply as convenient examples, because both have
been extensively studied and are easy to apply to age- and stage-structured models. B
functions were originally developed for application to fish populations; explanations of thei
derivations and uses can be found in Hilborn and Walters (1992) or in Quinn and
(1999). The key parameters of these two functions are the constants ¢, in the Beverton-Holt
model and « in the Ricker model. They represent the maximum possible values of the survival
rate s. When the population size (n) is very low, s is approximately equal to ¢, (Beverton-H
model) or a (Ricker model). As n increases, s decreases in both models (although at a differ
rate in each model). In the fisheries literature, the parameters ¢; and « are sometimes term
estimates of “compensatory reserve,” because they are measures of the capacity of pop
tions to grow at low population sizes. Populations with high compensatory reserves i
populations that grow rapidly at low population sizes) are more resilient to environmenta
disturbances, and can often sustain higher rates of harvesting, than can populations with 108
compensatory reserves (Christensen and Goodyear 1988; Rose et al. 2001).

The functional forms of Equation 27.12 and Equation 27.13 do not reflect specific bio
logical processes, and there is no way to directly measure the critical parameters (c1, ¢2, @, @ nd
B). Moreover, there is no way to determine a priori which functional form is appropriate fora
given population. In principle, it should be possible to determine which model is appropriate
by fitting both models to a time series of data on population abundance. In practice, the
available data are rarely sufficient to unambiguously distinguish between the two models. For
the purpose of risk assessments, uncertainty due to differences between alternative models
the same process can usually best be dealt with by performing alternative simulations using all
of the alternatives. If the results are not affected by the choice of models, the most convenient
model may be selected; if the results are highly dependent on the choice of models, it may be
better to perform parallel simulations using both. 4

Predictions about future population behavior or response to stress can be extremely
sensitive to variations in functional forms and parameter values. For this reason, mana
ment applications of density-dependence have had mixed success and are often highly
controversial (Rose et al. 2001). As in most other applications of mathematical models
risk assessment, these difficulties are minimized if the models are used for compara
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; oses rather than for the purpose of predicting future states of nature. For example,
rthouse et al. (1990) used stochastic, density-dependent population models to examine the
ative influence of uncertainties concerning life history, harvesting mortality, environmental

1sses. The purpb
pite of fluctuatio; _;,.
ection 27.1.4),

1 population mod s § ability, and chemical toxicity on the predicted responses of fish populations to chemical
n of Equation 2 sosures. They found that uncertainties related to the characteristics of the exposed popu-
deterministic , ons were negligibly small compared with uncertainties related to laboratory-to-field
>w without bounds rapolation of toxicity test data.

iven enough time, 3 .

)l;,?,:oﬁgr? i .3 AGGREGATED MODELS

for density-de any readers of this book will be familiar with other kinds of population models, such as the
stic model and stock-recruitment model. These approaches to population modeling differ
-§ ].. the models discussed above in that all organisms are aggregated into one or two
(27 mponents such as “population size” or “parents and offspring.” The logistic model has a
p mstory in population biology, and is discussed in all college-level ecology textbooks. It is
haps the simplest model that simulates the growth and stabilization of populatlons
form of the logistic model, known as the Shaeffer surplus production model, is used in
eries management. Good discussions of surplus production models and of the various
ms of stock-recruitment models can be found in Hilborn and Walters (1992). Because of its
reme simplicity, many applied population biologists view the logistic model and its
jants as being of little practical value. However, as long as precise numerical predictions
 not required, the logistic model may be used as an approximation to more complex
dels. The model is usually expressed in differential equation form:

> Ricker functiof
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; explanations of :
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1to ¢ (Beverto
although at a diff ere K = population carrying capacity.
are sometimes 0 integral form, the model can be expressed as
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msatory resery N, = K 27.15)
ient to enviro; 14e

populations wi

201). a the size of the population is very small relative to its carrying capacity, the rate of

ot reflect sp wth of the population is close to the maximum possible rate r, which is the same intrinsic
-ameters (¢1, of population growth defined in Equation 27.1. The rate of population growth declines as
‘m is appropri P pulatlon grows, and approaches zero as the populatlon approaches the carrying

1 model is app! acity, K. The logistic model can also be expressed as a recursive discrete-time equation,
ich may be useful for simulating recovery of a population from repeated disturbance
o

. alternative m
e simulations us
5, the most conVs
e of models, it 1

Nep1 = N; + 7N, (K KN') (27.16)
Sturbance is simulated by eliminating a fraction of the population present on the day of
isturbance. The population immediately begins growing again toward carrying capacity,
[ the next disturbance occurs. Barnthouse (2004) used both the continuous and the
tete forms of the logistic model to estimate approximate population recovery times for
us aquatic organisms following simulated mortality due to agricultural chemical appli-

ns. Nakamaru et al. (2002) used a stochastic version of the continuous logistic model to
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quantify the influence of DDT exposure on the probability of extinction of herring gyjf
populations. Snell and Serra (2000) used a variant of the discrete logistic model to quantify

the influence of generalized chemical exposures on the probability of extinction of rotifer
populations. These studies are discussed later in this chapter.

27.2.4 METAPOPULATION MODELS

Many species, and in particular most terrestrial species, do not exist as continuous interbreed-
ing populations. Instead, they consist of subpopulations inhabiting patches of suitable habitat
interspersed among patches or regions of unsuitable habitat. All of these patches are subject to
environmental variability. Small populations frequently become extinct, but new populations
can be established in empty habitat patches by colonists arriving from other patches. This view:
of species as “metapopulations” was first formalized by Andrewartha and Birch (1954)°
although they did not use the term. Levins (1969) is credited with developing the first formal
metapopulation model. He formulated a simple relationship between the fraction of habitat
patches occupied by a species at any given time (p(?)), the rate of extinction of occupied patches
(e), and the rate of production of propagules from each occupied patch (m). At any time ¢, the
number of propagules produced is equal to the rate of production per occupied patch multiplied
by the fraction of patches occupied. If each propagule has an equal probability of dispersing to
occupied and unoccupied patches, a fraction equal to (1 — p) of the propagules will colonize
unoccupied patches. At the same time, a total number of patches equal to ep would become
extinct. The rate of change in p at any time would be determined by the equation:

d 3
T =mp(l—p)—ep (27.17)

The equilibrium frequency of occupied patches (p*) is determined by the ration of the
extinction and colonization rates: :

p*=1—e/m (27.18)"

If extinction is more likely than dispersal (i.e., e is larger than m), extinction of the metapo-
pulation is inevitable. This result is intuitively obvious, even without the model. What is not"
obvious, however, is that if e and m are nearly equal, the fraction of occupied patches can be.
expected to be very small, even if the rate of dispersal of propagules from occupied patches is
very high. Under this circumstance, random variations in extinction and colonization rates:
can cause metapopulation extinction, even if under constant conditions the metapopulation:
would persist. 7

The above model is too simplistic to be of much value in the management of real
populations. However, the fundamental processes and variables considered in the model,
i.e., dispersal, extinction, and percent occupancy of available habitat, are central issues in-
conservation biology. In the 1980s, conservation biologists turned to metapopulation theory:
as a means of designing preservation strategies for vertebrate species that, although once
widespread, were becoming restricted to isolated subpopulations because of increasing habi-
tat fragmentation. Levins’ original model has been extended to include influences of local"
population size, local population structure, spatial dispersal patterns, interspecies inter-
actions, and population genetics. Hanski (1999) has provided an excellent overview of
metapopulation ecology, including both theoretical and empirical aspects. 3

Metapopulation biology provides ecological risk assessors with both a conceptual frame-
work and modeling techniques for addressing the effects of spatially variable chemical
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nO sures on populations inhabiting spatially heterogeneous environments. Maurer and Holt
09 6) used a metapopulation model to demonstrate that pesticide applications can endanger
, regional persistence of species by reducing the pool of sites available for colonization.

romberg et al. (1998) developed a generalized metapopulation model based on an extension
Equation 27.17 and used it to examine the influence of the spatial arrangement and
anectivity of patches on the response of the metapopulation to a toxic chemical that affects
& e of the patches. Chaumot et al. (2002, 2003) used a multipopulation extension of the Leslie
>ontinuous interbre rix approach to model the impacts of cadmium discharges on a brown trout metapopula-
‘hes of suitable hap; n inhabiting a hypothetical river network. This study is discussed in more detail later in

: patches are sy e chapter.

nction of herring g
stic model to quang
f extinction of

, but new pop :
ll::r :;(t;’l]‘;s h (1 2.5 INDIVIDUAL-BASED MODELS

1rc > 3
'oping the first fo '; .. ately, the health of a population is no more than a collective expression of the health of
he fraction of individual organisms. The models discussed are at best abstractions that capture the
n of occupied ;al (we hope the essential) features of the biology of the organisms. Some, like the
(m). At any tim tlal populatlon growth rate model or the densxty—dependent Leslie matrix, are basically
1pied patch mul kkeeping devices with which the deaths and births occurring during a given time are

wility of dispersin rn ated while the biological mechanisms responsible for reproduction and mortality are
0 red All organisms within a given class (however defined) are assumed to be indistin-
shable. Clearly, all organisms are not indistinguishable, and variations between individuals
1 have substantial influences on the responses of populations to anthropogenic stresses or
nagement actions. Recognition of these problems has led to interest in “individual-based”
dels, i.e., models in which population dynamics are represented in terms of the physio-
sical, behavioral, or other properties of the individual organisms. The general procedure is
develop a model of the individual organism to whatever level of detail is required, and then
nfer the properties of the population as a whole either by analytical solution of equations
by numerical simulation of the activities of hundreds or thousands of individual organisms
pure 27.2).

ndividual-based models have made important contributions to understanding successional
erns in forests (Huston and Smith 1987), comparing the structure and development of
ferent forest types (Shugart 1984), and predicting the effects of environmental stress on
est composition (Dale and Gardner 1987). A substantial number of applications to fish
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upied patch pulations have also been published (Sperber et al. 1977; Adams and DeAngelis, 1987;
1 occupied patek Angelis et al. 1990; Madenjian and Carpenter 1991; Rose and Cowan 1993; Rose et al.
id colonization 3]

fhere are two broad approaches to developing individual-based models, of which one
v phasizes Monte Carlo simulation and the other, analytical solutions to equations. The
nanagement of tleties of the approaches and criteria for choosing one over the other have been discussed
dered in th Caswell and John (1992) and DeAngelis and Rose (1992). Elegant examples of the
are central alytical approach have been published by McCauley et al. (1990) and Hallam et al.
90). The principal advantage of the analytical approach is that results obtained are
eral, easy to verify, and easy to understand. The level of detail, however, must be
promised to achieve analytical tractability. In practice, the published biological applica-
A of analytical individual-based models all deal with relatively simple organisms such as
hnia.

cellent overvie he most widely known analytical individual-based models have emphasized physiological
S. 3 “-.= teristics such as metabolism, growth, and chemical toxicodynamics. McCauley et al.
1 conceptual %0) developed a model of Daphnia growth and reproduction based on energetics and used
» variable ch model to predict time-dependent changes in the age and size structure of Daphnia

the metapopul2
{ -
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1. Distributions of parameters of individual organisms
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environment experienced by individual » at time 7 such as temperature, pollutant concentrations, :
prey availability. S,_; is the state of the organism at the previous time step. R, is the respo
individuals such as death or maturation. R, is the response of the population such as abundance
harvestable biomass.

populations in response to changes in food availability. Work on metabolism and toxicod
namics was pioneered by Kooijman and Metz (1984), who examined the influence of
chemicals on metabolism and population growth using Daphnia as a model organism. H
and Lassiter extended this approach to include (1) a thermodynamically based model
the uptake of contaminants from aqueous media, and (2) a definition of death in terms of#
internal dissolved contaminant concentration within an organism (Hallam et al. 1990; La
and Hallam 1990). Kooijman (2000) used the principles developed in these early studi
the basis of a formal framework for physiologically structured population modeling te
“Dynamic Energy Budget” (DEB) modeling. The DEB approach links physiological ch
teristics of the organisms to the growth rates and age distributions of populations, and @
the exposure concentrations and modes of action of toxic chemicals to the physiologi€
characteristics of the individuals. A software package (DEBtox; Kooijman and Bedaux
has been developed for the purpose of estimating the chemical effects parameters used in
models from toxicity test data collected using standard Organization for Economic CooF
ation and Development (OECD) protocols. i
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The DEB approach is intended for application to aquatic organisms with relatively simple life
wles, inhabiting homogeneous environments. The models are very general in form, and
palysis of the models emphasizes analytical investigation of the equations. An entirely different
pproach has been used to develop individual-based models of organisms with more complex
fe cycles, inhabiting more complex environments. DeAngelisetal. (1991) and Rose and Cowan
993) developed models of fish populations that include metabolism, growth, foraging behav-
or, and prey selection as functions of the life stage and age of the fish. The approach followed in

DOUS Valipties 4 eveloping both of these models was to use the existing extensive literature on bioenergetics,
g 1_,', roduction, and foraging of individual fish, coupled with exhaustive evaluation of the life
§ . ; istory of specific fish species, to develop detailed models of each life stage from egg through to
T - eproductive adult. Population-level consequences of changes in the physiology, behavior, or

= eproduction of individual fish were inferred by brute-force simulation of the birth, growth, and

eath of hundreds or thousands of individual fish. The models were calibrated to extensive data
ets collected for specific fish populations. This approach was later used by Jaworska et al.
997a) to model the effects of simulated PCB exposures on young-of-the-year largemouth bass
n southeastern US reservoirs. Jaworska et al. (1997b) used individual-based models of walleye
and yellow perch populations to test whether causes of adverse changes in populations could be
nferred from observed patterns of abundance, growth, and age structure. Rose et al. (2003) used
n individual-based model of an Atlantic croaker population to link experimental data on the
ffects of PCB exposures on fecundity, egg survival, and larval predator avoidance ability in this
species to population-level effects. This study is discussed in greater detail later in the chapter.

' The metapopulation model VORTEX, originally described by Lacy (1993) and subse-
quently applied to a wide variety of endangered vertebrate populations, is fundamentally
an individual-based model. The core of VORTEX is a stochastic model of the birth, growth,
movement, reproduction, and death of each animal present in a population. The growth,
decline, or extinction of a population is calculated by simulating the fate of each animal and
s offspring for multiple generations. Estimates of the probability of persistence and expected
me to extinction of the simulated populations are obtained by performing multiple runs in

. X,, ¥, and Z, are P ! o s e
gcharacterizfics of the which random values of key parameters are drawn from prespecified statistical distributions.
concentrations, and ‘Within the last decade, as the availability of Geographic Information System (GIS)

echnology has expanded, ecologists have used this technology as a basis for a new class of
ndividual-based models termed spatially explicit models. In spatially explicit models, organ-
sms are distributed over a realistic landscape composed of habitat patches of different types
and suitability for utilization by the species of interest. The spatially explicit approach permits
ecologists to integrate theory and observations on foraging behavior and reproduction in
ndividual animals, relate these to specific measurable habitat characteristics, and infer
nfluences of habitat change on populations.

'» i the response 0!

ich as abundance or
-

lism and toxicody
influence of to;

orgams e ' " Thorough and well-tested models of this type have specially been developed for popula-
y i a}sed me ; : -T_ lions of ungulates foraging in Yellowstone National Park (Turner 1993; Turner et al. 1994)
i al ullsgg-nls.aZSi n and for the population of Bachmann’s Sparrow nesting on the US Department of Energy’s
'se e.arl s,tu dies Savannah River site. Recently, an individual-based model of skylarks utilizing an agricultural
v ode)l,in g te andscape in Denmark has been used to compare the relative influences of pesticide applica-

lions and land use change on the abundance and persistence of this species (Topping and

ssiological ch Odderskar 2004). This study is discussed in greater detail later in the chapter.
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?.3 APPLICATIONS TO TOXIC CHEMICALS

Most of the modeling approaches (DEB modeling is an important exception) discussed were
developed to address theoretical problems, to manage exploited populations, or to aid in the
sonservation of endangered species. However, interest in applying these approaches to




398 Ecological Risk Assess

ecological risk assessment of toxic chemicals has grown over the past few years. In addition ¢
numerous papers published in the scientific literature, three recent international works
have addressed potential ecotoxicological applications of population models (Kammenga g
Laskowski 2000; Baird and Burton 2001; Barnthouse et al. 2006). The following case sty {[
provide examples of these applications. 1

27.3.1 QUANTIFYING UNCERTAINTIES IN INDIVIDUAL-TO-POPULATION EXTRAPOLATIONS

Barnthouse et al. (1987, 1988, 1990) developed a series of models that directly link toxicity tes
data to fish population models, and then used the combined models to evaluate the ecologi
implications of toxicity test data. Although this work was published nearly 20 y ago, it is stjj
relevant today, for at least two reasons. First, it provides examples of applications of some g
the extrapolation approaches discussed in Chapter 26 of this book. Second, it explores th
relative uncertainties inherent in extrapolation of laboratory test data to effects on population
in the field in a way that has not yet been duplicated or superseded by more advanced methods]

Two different approaches to population modeling were used in these studies. In the firg
two papers of this series, estimates of the survival and reproduction parameters used in ¢ he
Leslie matrix were used to calculate an “index of reproductive potential.” The index was
defined (Barnthouse et al. 1987) as the expected contribution of a female recruit (a 1-y-old
female fish, in fisheries science terminology) to future generations of recruits, taking intg
account (1) her annual probability of survival (s;), probability of being sexually mature (m
and age-specific fecundity (f}); and (2) the probability that a spawned egg will hatch and
survive to age 1 (so). The reproductive potential of a 1-y-old female recruit is given by

P=sy Zs,— fim; (27.19)
=1 3

Although Equation 27.19 contains the same parameters found in the Leslie matrix (Equation
27.6), the reproductive potential index is not used to calculate the future abundance or
composition of a population. Instead, it is used as a relative measure of the effect of changes
in mortality or fecundity on a population, expressed as a fractional reduction in reproductive
potential (Ry): '

R,=(P-P)/P (27.20)

where P, is the reproductive potential index in the presence of a stress that reduces survival
fecundity, or both. The value of P; is calculated from ;

n B
Py=so(l— Cm) > si(1 — CY'fiCimy (2724
i=1 -

where C,, = probability of stress-induced mortality during the first year of life; C,
probability of stress-induced mortality for 1-y-old and older fish (assumed to be equal for
all age classes); and Cy = proportional reduction in fecundity due to stress (assumed equal for
all reproducing age classes). ‘

The reproductive potential index was originally used to assess impacts of power plan
cooling systems on fish populations (Barnthouse et al. 1986). Since the mid-1980s, a variant of
the index termed the “spawning stock biomass per recruit” index has been widely used in
marine fisheries management (Goodyear 1993).
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The reproductive potential approach, like the density-independent Leslie matrix, cannot
account for natural environmental variability or density-dependence. To explore the influence
of these processes on responses of fish populations to toxic chemicals, Barnthouse et al. (1990)
jeveloped density-dependent, stochastic matrix projection models for two especially well-
studied populations: the Gulf of Mexico menhaden population and the Chesapeake Bay
striped bass population. The models employ conventional projection matrices, but with the
ival coefficient for young-of-the-year fish (so) containing both density-dependent and

4 S
ARDLIRONS 3 andomly varying components. Estimates of the coefficients were obtained from published
tly link toxicity test abundance, age structure, and mortality statistics for these two populations.
luate the ecologica] Survival of young-of-the-year fish was calculated using

720y ago, it is still.

ications of some of 5o = e~ +Rio—0.50"—pNo (27.22)
nd, it explores the

:cts on populations where @ = expected annual instantaneous rate of density-independent mortality; o =
idvanced methods; standard deviation of a; R; = a unit random normal deviate; and B = coefficient of
tudies. In the firs| density-dependence. Effects of chemicals on young-of-the-year are incorporated by replacing
meters used in the o in Equation 27.19 with

1.”” The index 3

: recruit (a 1-y-old o =a—In(l-Cy) (27.23)
CI'UitS, takmg int 4

ually mature (22;) where C,, = fraction of young-of-the-year expected to die from effects of chemical exposure.
:gg will hatch and Effects of chemical exposure on fecundity were incorporated by multiplying each age-specific
tis given by fecundity rate (f;) in the population matrix by a fecundity reduction factor.

' The contaminant effects factors were estimated from standard life-stage-specific toxicity
» data using concentratxon—response models and extrapolation models (inter-life-stage
@27.15 d interspecies) described earlier in this book. These procedures were used to develop
xposure—response relationships that explicitly incorporate three types of uncertainty in
ab-to-field extrapolations: test variability, species-to-species unoertamty, and acute-to-
hronic uncertainty. The concentration-response function used in these analyses was the
pgistic model:

- matrix (Equatior
abundance or
2 effect of ¢ -
on in reprodu tiv P=eBX )1+ #HAx)y (27.24)
]
yhere P = fractional response of the exposed population; X = exposure concentration; and
X nd B = fitted parameters with no direct biological interpretation. When fitted to concen-
ration-response data, the logistic function has a sigmoid shape similar to the probit model.
Joncentration—response data sets were fitted to Equation 27.24 using nonlinear least-squares
gression. Uncertainty concerning the shape and position of the concentration-response
function, as reflected in the variances and covariances of a and B, were represented graphic-
ly as confidence bands surrounding the fitted functions.

‘Concentration-response functions specific to each life stage were combined to produce
tegrated functions that express the effects of chemical exposures, including uncertainty, on
Opulation-level response variables. An example is provided in Figure 27.3, which shows a
ncentration—response function for brook trout exposed to methylmercuric chloride (data
om McKim et al. 1976), with female reproductive potential as a response variable. The
aximum acceptable toxicant concentration (MATC) for the data set (calculated as the
etric mean of the no observed effect concentration (NOEC) and the lowest observed
concentration (LOEC) and also known as the chronic value) corresponds to a 55% to
% reduction in brook trout reproductive potential. This result, and other similar ones
esented in Barnthouse et al. (1987), demonstrated that MATCs calculated from life cycle
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Lag | 1

Reduction in reproductive potential

-3 ) -1 0 1

reproductive potential of brook trout exposed to methylmercuric chloride. The lower dashed ling
denotes the 10% effect level (EC,q). The two upper dashed lines denote the 90% confidence band for
the effects level associated with the maximum acceptable toxicant concentration (MATC). (From
Barnthouse, L.W., Suter, G.W., II, Rosen, A.E., and Beauchamp, J.J., Environ. Toxicol. Chem., 6;
811, 1987.)

toxicity tests often correspond to surprisingly high population-level effects and cannot i
general be construed as ecological effects thresholds. :

Barnthouse et al. (1987, 1988, 1990) used the above models for a variety of purposes
Extrapolated population responses were compared to MATCs derived from the same dat
sets, demonstrating that MATCs are not equivalent to population-level no-effects thresholds
(Barnthouse et al. 1987, 1988). Comparisons of uncertainties associated with different test
endpoints showed that fecundity responses are substantially more variable and introduce
more uncertainty into risk assessments than do mortality responses (Barnthouse et al. 1988)
Comparisons of uncertainty introduced in different extrapolation steps and toxicity test t
were used to quantify the relative value for risk assessment of different toxicity testing
strategies (Barnthouse et al. 1990). Comparisons between responses of menhaden and striped
bass populations showed that, for typical screening-level assessments, uncertainties related {0
life history, environmental variability, and harvesting intensity would be negligible comparet
to toxicological uncertainties resulting from the use of quantitative structure-activity rela-
tionships and short-term toxicity tests to predict long-term population responses.
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»7.3.2 Lire History—BAseD EcoLoGICAL Risk ASSESSMENT

ow et al. (1997) and Forbes et al. (2001) proposed an approach for assessing population
;1. community-level risks based on a combination of toxicity test data and simplified life
pistory models. The model used in this approach was first described by Calow and Sibly
1990). It assumes a highly simplified life history involving only two stages: juveniles and
ad ults. It has only five parameters: the fractions of juveniles surviving to first breeding (S));
the fractlon of adults surviving between breeding events (S;); the time from birth to first
preeding (1)); the time between breeding attempts (ta), and the number of offspring produced
ser individual at each breeding (). Each organism is assumed to have a potentially infinite
fe span. Only female organisms are included in the model. Under these assumptions, Calow
and Sibly (1990) derived a simple formula for calculating the finite population growth rate (8)
rom the discrete form of the fundamental population growth rate equation (Equation 27.3).
The procedure involves reformulating the fundamental equation as an infinite sum, recalling
that the survivorship term (/) in the equation can be expressed as the product of survival
fractions from birth to age x:

o0
1= A7lm, = A7U8n + A8, Sun + AR 5;80n + -
=1

=S A7 (1 +A7" S, + A7 282+ -) (27.25)

v,bstituting y=A""S,:

l=nSA(1+y+y*+y +--) (27.26)

i_'; ause both A% and S, are limited to values between 0 and 1, y must also be a number
between 0 and 1. A theorem from the mathematics of infinite series states that for any number

reduction in femalg ) between 0 and 1:
: lower dashed lin
confidence band fo!
m (MATC). (From

- 1
2 = (27.27)
Toxicol. Chem., 6; x=1 =,

[

(herefore, Equation (27.22) can be restated as

nS;A™Y nS;AY -

cts and cannot il
3 1= T—y —T—A"%5, (27.28)
riety of purposes
om the same da vhich can be rearranged as
-effects thresholds B
with different tes! 1=nSA™ + SaA™" (27.29)

ble and introduce

house et al. 1 Calow et al. (1997) used this model to illustrate the influence of chemical toxicity on species

toxicity test With different general life history types: semelparous species (species that reproduce only once
1t toxicity tes efore dying, so that S, = 0); moderately iteroparous species (S; = 0. 5); and strongly
haden and stripet leroparous species (S, = 0.9). They examined the effects of chemicals that affected juvenile

“i ival, reproduction, or adult survival on species with these life history types. Not
Surprisingly, reductions in juvenile survival or reproduction per breeding event had the
greatest effect on A for semelparous species and the least effect on strongly iteroparous
pecies. Reductions in adult survival, on the other hand, had the greatest effect on strongly

rtainties related &
gligible compar€
ture-activity .?'
J0nses.
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iteroparous species and the least effect on semelparous species. The relative durations of
time to first reproduction (7;) and the interval between reproductive events (Z,) also aff
the responses of the model populations to reductions in survival or reproductlon The shorfe
the value of ¢ relative to #,, the greater is the sensitivity of A to reductions in surv1v31_
reproduction.
The model described above is obviously quite simplistic, but it is also highly adapta s
Basic information on time-to-maturity, reproductive rate, and longevity are available f
most types of organisms. Provided that dose-response models describing the relationshj
between chemical concentrations and effects on survival and reproduction can be develo
models relating chemical concentrations to changes in A for different general life history typ
can be defined. Given information on the frequency distribution of different life histg
types present in a given ecosystem, “life history sensitivity distributions,” analogous to thg
species sensitivity distributions (SSDs) described in Section 26.2.3, can be constructed. :
Forbes et al. (2001) expanded on this idea in a subsequent paper, in which they comp
hypothetical aquatlc life protection criteria derived from population growth rate analys1s ¢
criteria derived using conventional toxicology-based approaches. In this paper, the author
defined four life cycle types representative of major organisms found in aquatic ecosyste n';'
benthic invertebrates, fish, zooplankton (daphnids), and algae. They applied the life histc
model described above to each life history type, assuming that the long-term populatior
growth rates (A) for each organism type were approximately 1.0. They then investigated :
influence of small changes in juvenile survival (S;) on the population growth rate, using the
elasticity index defined earlier in this chapter. Elasticities measure the proportional contribys
tion of each life cycle parameter to the overall population growth rate. The authors found that
the population growth rate of benthic invertebrates was the most elastic to small changes in
juvenile survival, and that the population growth rate of daphnids was the least elastic. his
means that, for any given decrease in survival caused by exposure to a contaminant, iLr:.
corresponding reduction in A would be greatest for the benthic invertebrate life cycle and l
for the daphnid life cycle. 3
The authors then simulated a community composed of a mix of species with the four lifé
history types, and compared protection strategies based on several conventional toxicity-
based approaches to a protection strategy based on protection of population growth rate
The analysis assumed that the contaminant in question affected only juvenile survival (S):
First, they developed a hypothetical dose-response function so that changes in juve '
survival could be translated into corresponding contaminant concentrations. For e
life cycle type, they calculated the contaminant concentration corresponding to 10% redué
tion in A. This value was assumed to be a safe concentration for each life cycle type, i.e., &
population-level NOEC. :
They then developed a series of scenarios in which both the relative toxicities of a
hypothetical chemical to organisms with different life cycle types, and the relative contribis
tions of different life cycle types to the total community, were varied. Variability in sensiti
among species within the same life cycle type was simulated by assuming a log-norn
distribution of NOECs within each group. Monte Carlo simulation was used to calcul
(1) the average NOEC for the community, i.e., the concentration at which the average val €
of 8 for all species was reduced by 10%; and (2) a 95% protection level for the community, i.
the concentration at which only 5% of the species-specific NOECs is exceeded. These values
were compared with protective concentrations developed using conventional toxicity-ba
standard-setting toxicological methods: an application factor method and an SSD-bz
method. Forbes et al. (2001) found that the protective concentration based on a 1 /o
reduction in A was, in general, substantially higher than the concentrations calculated usin
the application factor or the SSD. Hence, conventional risk assessment approaches appea
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produce protective estimates of environmentally safe contaminant concentrations, and in
me Cases these approaches appeared to produce substantially overprotective concentra-
_ There were, however, some circumstances (e.g., a preponderanoe of species with a
ns mve life cycle type and also high chemical sensitivity) in which the conventional ap-
-oaches might produce underprotective concentrations. Forbes et al. (2001) concluded that
ore research on the relative contributions of different life history types to aquatic commu-
jties is needed to refine environmental protection protocols so that they provide truly
-otective, but not overprotective, estimates of safe exposure limits.
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; g Al ,'3 3 UANTIFYING IMPACTS OF CHEMICAL ExPOSURES ON Risk OF EXTINCTION
different life histor Q

1s,”” analogous to the gell and Serra (2000) used an empirically derived, stochastic model of temperate rotifer
be constructed. opulations to simulate the impacts of a hypothetical chemical exposure on the long-term risk
which they compareg f population extinction. Their model is based on a density-dependent variant of the expo-

owth rate analysis tg
is paper, the auth

1 aquatic ecosyste
oplied the life history
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rowth rate, using the
roportional contribu

ential growth model:
N; =N, €" (27.30)

Rather than being a constant as in Equation 27.2, the growth rate (r,) is a function of previous
opulation density and environmental variability. The authors obtained values for the
arameters of the growth rate function by analyzing a time series of population density
ta for a natural rotifer population. Under most circumstances, rotifers are parthenogenetic
e authors found tha .e., all individuals are female, and produce eggs that hatch into other females that produce
¢ to small changes i nly female eggs). At high densities, however, a fraction of the offspring produced comprises
the least elastic. This mictic” females capable of sexual reproduction. Unfertilized eggs produced by mictic
y a contaminant, the emales hatch as male rotifers capable of fertilizing mictic females. The eggs produced from
ate life cycle and leas exual reproduction are “resting” eggs, which fall to the sediment. Resting eggs are subject to
5 wortality during both summer and winter, and they are the only life stage that survives
s hrough the winter. In the model simulation, the growing season for rotifers is assumed to last
onventional to or 240 d, after which all individuals in the water column die. The following spring, the
ulation growth ra DO ulatlon in the water column is reestablished from resting eggs that hatch from the
uvenile survival (S)) ment. Only 10% of resting eggs hatch during any given spring, and those that do not
changes in juvenile atch remain in the sediment as an “‘egg bank™ that can potentially repopulate the water
ntrations. For each solumn for several years, and provide insurance against catastrophic events that may kill all
nding to 10% red otifers in the water column.
life cycle type, i.¢., @ Persistence and extinction in the model of Snell and Serra (2000) is determined by the
; sxty of resting eggs. If, during any year, the density of resting eggs falls below a critical
yalue, the population is assumed to become extinct. The authors calculated extinction risks by

ative toxicities of
’ 1 ulatmg the fate of 1000 populations, all starting from the same initial populatlon size, over

‘he relative con

riability in sensi a period of 100 y. They found that, even without chemical exposures, there is about a 5%
uming a log-norn ) tmctlon risk for a rotifer population over a 100 y period. The authors simulated three types
ras used to calculate of perturbations that could increase extinction risks: a continuous reduction in r caused by a

thronic chemical exposure, an intermittent reduction in r caused by an intermittent chemical

ich the average vall

the community. exposure, and a series of catastrophes occurring with different frequencies.
ceeded. These val  Effects of chemical exposures were simulated by mulnplymg each value of , by a constant
tional toxicity- fraction. The authors found that even a continuous reduction in r as small as 10% raised the

SXtinction risk for a rotifer population to approximately 20%, and that a reduction in r of 30%
or greater raised the risk to nearly 100%. The influence of intermittent reductions in r was
Simulated by assuming that r, is reduced by 25% on a percentage of days rangmg from 20% to
‘“ . Extinction risks were lower in the case of intermittent reduction than in the case of

and an SSD-baset
m based on a 107
lons calculated usi
ipproaches app
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continuous reduction; however, reducing r, on only 40% of days still increased the 100
extinction risk to 30%. Simulated chemical exposures also reduced the abilities of the
rotifer population to survive periodic catastrophes. In the absence of chemical exposures,
catastrophe frequency of once every other year increased the risk of extinction from 5% ¢
about 25%. If, in addition, a 10% continuous reduction in r occurs due to chemical exposun
the extinction risk is raised to 60%.
According to the authors, the underlying reason for the sensitivity of their mode]
chemical exposures is the dynamics of the resting egg bank. A minimum number of restin
eggs must hatch in the spring so that the density of parthenogenetic rotifers can increas
rapidly to the threshold density required for sexual reproduction. Reducing r reduces the raf
of growth toward the threshold, and also the number of resting eggs that can be produce
before the end of the growing season. If insufficient resting eggs are produced, the size of the
egg bank begins to fall, reducing the number available for hatching the following spring.
further extends the time required for growth to the sexual reproduction threshold, agaig
reducing the number of resting eggs produced. Eventually, the egg bank declines below thg
extinction threshold. 3
Snell and Serra (2000) concluded, based on their analysis, that even small reductions inj
including levels that are often presumed to be safe in toxicity tests, can pose significant exting
tion threats to natural rotifer populations. They argued for increased use of population-baseg
methods in risk assessments. i
Nakamaru et al. (2002) used a different modeling approach to quantify extinction risks in#
herring gull population exposed to DDT. These authors modeled population growth a f
extinction using a stochastic version of the logistic model (Equation 27.14):

K- N
W (—K—) + 0k (i) o N +aata®) VN

In this equation the terms N, r, and K are defined in the same way as before, as population size,
intrinsic rate of population growth, and carrying capacity. The additional terms in the equation
represent environmental (o.£e) and demographic (o, £,) stochasticity. Environmental stochas
ticity is simply random variation in environmental factors affecting population growth. Demo
graphic stochasticity is random variation in population due to the fact that, in stochas it
models, births and deaths of individual organisms are random events. The symbols (= and
used in the equation denote mathematical operations performed, using the “Stratonovicl
calculus” and the “Ito calculus,” respectively. Readers interested in what these operations arg
and how they are performed should consult a good textbook on stochastic differential equa:
tions and be prepared for some heavy reading. The benefit of using a model like this rather thatt
performing hundreds or thousands of Monte Carlo simulations is that mathematicians (in thi§
case Hakoyama and Iwasa 2000) can derive an integrated equation that describes the influencé
of key model parameters on the risk of population extinction. The relationship betwes n
extinction time, carrying capacity, and environmental stochasticity is defined by

2 K o0 y+D R(K+D)+1 1 3
T=—= ~Ro=x) (—) e Y 27.32)
az,/o /o g x+D G+Dy” ¢'3

The term R represents the more complex term 2r/(02K) and the term D represents 1/o2. The
mean time to extinction (7') is defined in units of generation time. Hence, Equation 27.31 call
be used to calculate the mean number of generations a population will persist befor®
becoming extinct, given estimates of r, K, and al.
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How does DDT affect the risk of extinction of a herring gull population? Nakamura et al.
002) addressed this question by modifying the parameters r and K in Equation 27.32 to
clude a reduction caused by DDT exposure:

r=r—a (27.33)

of their moddll K'=(@-a)K/r (27.34)

1 number of res

otifers can in though the mathematics may be abstruse, the conceptual basis of the model can be very
1g r reduces the ; mply summarized: mean time to extinction is a function of population growth rate, carrying
at can be produce apacity, environmental variability, and DDT exposure. DDT decreases both population
iced, the size of rowth rate and carrying capacity, thereby shortening the expected time to extinction.
lowing spring. The authors used data from herring gull populations in Long Island, New York, to
m threshold, lustrate how the model can be used. They used observed doubling times of newly established
declines belo erring gull populations and measures of interannual variability in long-established popula-

ons to derive estimates of r and o?. They estimated a range of carrying capacities (K),
orresponding to large and small herring gull populations. They estimated effects of DDT on
and K using a multistep procedure that considered both age-specific fertility in female
erring gulls and influence of DDT exposures on female fertility. Using this information,
ogether with published estimates of DDT biomagnification factors and historical concentra-
jons of DDT in Long Island Sound, Nakamura et al. (2002) estimated that DDT exposures
juring the 1960s reduced r in herring gulls by approximately 20%.

Because herring gull populations are fairly large, and interannual variability in herring gull
bundance is small compared to many other types of animals, Nakamura et al. (2002) found
hat the expected time to extinction for both exposed and unexposed herring populations was
;e‘ ¢ long. For example, for unexposed populations ranging in size from 100 to 100,000 adult
emales, mean extinction times ranged from 10° to 10%° generations. Since the generation time
f herring gulls is approximately 8 y according to the authors, this means that a population
sonsisting of only 100 birds would be likely to persist for approximately 1 million years.
ronmental stoch ‘Perhaps more interesting than the extinction risks themselves are the calculations per-
ion growth. Demo: J) med by Nakamura et al. (2002) to compare risks due to DDT exposures with risks caused
that, in stochastic y habitat disturbance. The authors argued that, because chemical exposures and habitat
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1all reductions in
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isturbance both reduce the carrying capacity of a population, their model could be used to

the “Stratonovi tompare both types of disturbance in common units of reduced time to extinction. The
1ese operatio method for making the comparison is quite simple in concept (although not so simple
¢ differential equa mathematically). For a specific value of a, corresponding to a specific concentration of
ike this rather tha DDT in the environment, Equation 27.32 is used to calculate the change in time to extinction

1ematicians (in aused by DDT exposure. Assuming that the carrying capacity of a population is directly

zribes the influer :

) “oportional to the size of its habitat, one then uses a version of the model in which only K is
ationship betw educed (rather than both r and K as in the case of DDT exposure) to calculate the reduction
zd by ) K required to produce the same change in time to extinction.

: ‘The authors found that the equivalent habitat loss for any given DDT concentration is
g Strongly dependent on the size of the exposed population. For example, according to Table 2
¢ (27.32) n Nakamura et al. (2002), a water-column DDT concentration of 0.1 ng/L would cause the

Same change in time to extinction for a population of 100 herring gulls as would a 50.5%
eduction in habitat area. For a population of 100,000 birds, a reduction in habitat area of
96.5% would be required to produce the same change in time to extinction.

akamura et al. (2002) qualified their results on the grounds that many of their parameter
alues were only approximations and that herring gulls are a very abundant species with a
very low risk of extinction at present. They argued, however, that their method could be used

presents 1/072. [he
iquation 27.31 ¢
vill persist befort
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to calculate mitigation requirements (e.g., habitat protection or enhancement) needed ¢
protect endangered species exposed to DDT or other hazardous substances. 5

27.3.4 QUANTIFYING IMPACTS OF CHEMICALS ON METAPOPULATIONS

uted populations in which some subpopulations reside in habitats that are exposed ¢
pesticides and other subpopulations reside in unexposed or “safe” habitats. If migration g
organisms occurs between the safe habitats and the exposed habitats, it is possible in theor
for the exposed habitats to become “sinks™ that reduce the size of the population in the' ‘

with pesticides and others of which are not. If applying these chemicals to only a fraction ¢
the vegetation patches in a region could still cause extinction of nontarget populatiog
throughout the entire region, protocols for field-testing of pesticides would need to consi
this possibility. The authors used two alternative metapopulation models to determis
conditions under which this phenomenon could occur.

The first model used by Maurer and Holt (1996) is based on two coupled discrete- i
equations that describe births, deaths, and migrations within and between safe and ex
habitat patches:

de

Ny(t) = Ny(t — 1) + rNo(t — 1) — mNy(t — 1) + mN,(t — 1) (27.35

Ne() = Ne(t — 1) + reNe(t — 1) + mNy(t = 1) — mN(t — 1) (27.3¢

The terms r, and r, are net rates of population growth within safe and exposed habi al
respectively, accounting for both births and deaths. Since organisms in the exposed ha
should be declining in number, the growth rate (r.) in that habitat is assumed to be negative
The term m refers to the rate of migration of organisms between habitats, assumed to be the
same for both habitat types. The change in number of organisms within each habitat from
time (7 — 1) to time (¢) is thus equal to the number present at time (¢ — 1) plus the number bort
in the habitat or migrating in, minus the number dying or migrating out. ¢
The growth rate of the entire population in both habitats can be calculated by writing
Equation 27.35 and Equation 27.36 as a matrix equation and then using the metho
matrix algebra (Caswell 2001) to find the dominant eigenvalue. The resulting population

growth rate is given by :
241+ e — 2m+ ([ (rs — re)* + 4m?

2

As long as the rate of population decline in the exposed habitat is smaller than, or equal" t
the rate of population growth in the safe habitat (i.e., |re| < r5), A will be greater than 1 and
the population will increase. However, if the rate of decline in the exposed habitat is great€

than the rate of growth in the safe habitat, the population will decline to extinction if 51«

migration rate (m) is too high. If |r.| > rs, the threshold value for m, above which th
population will decline to zero, is given by ¢

Isle
rs+re
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» account for the possibility that density-dependent survival or reproduction might stabilize
e population and permit persistence under conditions in which the above model predicts
'ction, Maurer and Holt (1996) investigated an alternative model, based on the logistic
uation:

ancement) needed ;;V,,‘ ;
1nces. e

's on spatially dlstn T .
that are exposed tg 1= r:N,(l - —’) —mN; +mN,
sitats. If migration of dr K;

c (27.39)
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dn,
d—te = r.N, + mN; — mN,

ote that density-dependence is assumed to occur only in safe habitat. The population in the
posed habitat would, as in the density-independent model, decline toward zero in the
bsence of immigration from the safe habitat.

In this model, because of density-dependence, the total population will stabilize at an
quilibrium value determined by the values of the growth rate, migration rate, and carrying
pacity parameters. The population persists if and only if this equilibrium population size is
reater than zero. Maurer and Holt (1996) found that the condition for an equilibrium
ppulation size greater than zero is exactly the same as the condition for a positive value of
in the density-independent model.

‘These results, according to the authors, have important and counterintuitive implications
r the design of pesticide application programs. The authors noted that in both models the
kelihood that the total population will be able to persist is a decreasing function of the
ation rate between habitats. Hence, the ability of organisms to replenish exposed habitats
hirough migration actually increases the risk that a regional population inhabiting a mosaic
f treated and untreated habitats will become extinct. Persistence is more likely if little or no
nigration occurs between treated and untreated habitats. Moreover, the likelihood of per-
stence declines as the population growth rate in the safe habitat declines. The implication of
his result is that species with very high maximal growth rates, including many pest species,
an persist in the face of localized pesticide applications under conditions in which species
th lower growth rates, including nontarget vertebrate species, might become extinct. On the
asis of their analyses, Maurer and Holt (1996) concluded that typical approaches to pesticide
sk assessment that emphasize measurement of effects in laboratory studies and test appli-
ations to individual fields are inadequate because they fail to consider the spatial structure of
posed populations.

aumot et al. (2002, 2003) used a multiregion matrix population model to investigate the
nses of a hypothetical spatially distributed population of brown trout to cadmium
ischarges affecting a river network. In both studies, the trout population was distributed
mong 15 hierarchically organized compartments representing a network of first- through
urth-order stream segments. Three life stages were represented: alevins (age 0 trout),
iveniles, and adults. Trout were assumed to migrate seasonally between compartments,
ith spawning occurring in the first-order segments, and the different age groups of trout
stributed during the nonspawning season according to age distributions observed in field
1 In the first paper (Chaumot et al. 2002), all trout in any compartment had the same
[obability of migrating during the spring season. In the second paper (Chaumot et al. 2003),
e complete mixing assumption was relaxed to account for the observation that some trout
id not migrate, and both a spring and a fall migration season were modeled. In the first
aper, survival and reproduction were represented in an extended version of the Leslie matrix
Equation 27.6):

coupled discrete-time
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=1 (27.35)
s 1) (27.36)
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0 0 FPy
L=|S; 0 0
0 S S

ing compartment -specific fecundities and migration probablhtles The corresponding matr}
in the second paper is similar, but includes additional terms resulting from the more comp o
representation of the trout life cycle. d

In both papers, effects of cadmium on brown trout were modeled using dose-response d:
from laboratory toxicity tests. Life-stage-specific concentration-response curves were deriy Vel
using a logistic regression approach similar to the method used by Barnthouse et al. (198
1988, 1990). The matrix elements were then modified by multiplying the stage-spe
fecundity and mortality rates by reduction coefficients derived from the concentration
response functions. The first paper considered only chronic exposures; the second conside ':,A;
both chronic and acute exposures. i

In both studies, the authors used the elasticity analysis to determine the effects of cadmiug
exposure on the population growth rate, as a function of the location and intensity of}
hypothetical discharge. In addition, they calculated the effects of hypothetical discharges of
the age structure and spatial distribution of trout. In the second paper, the authors show

chemlcals

27.3.5 INDIVIDUAL-BASED MODELS

Topping and Odderskar (2004) described an individual-based model of a skylark populatr on
inhabiting an agricultural landscape in Denmark. The purpose of the study was to evaluaf
the influence of pesticides in relation to weather and agricultural practices as influences "«
skylark populations.

The landscape component of the model is a spatially explicit GIS-based system th
includes three types of farms, each of which has its own characteristic crop rotation patters;
and detailed rules for simulating the sequence of activities (e.g., pesticide application, water
ing, plowing, sowing) that occur on each farm. Roadside vegetation, hedgerows, and o he
noncultivated areas are also included in the model landscape. e

The skylark component of the model simulates the behavior of individual birds, includi
territory establishment, foraging, nest-building, incubation, and rearing. Each bird is
eled as an “agent” that engages in various behaviors contributing to survival and reprod
ive success according to sets of decision rules that take into account the bird’s size, a8
location, nest status, and other characteristics. The influence of weather on skylark repi€
duction is simulated by treating bad weather conditions (cold, wind, and heavy rain) @
categorical variables (i e, either present or absent during a given half-day time step), W é :

by vegetatlon type and growth rate (explicitly simulated in the landscape model), and be
available insect biomass within a given vegetation type.
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Topping and Odderskzr (2004) developed parameter sets for the model based on landscape
ata for a specific region in central Jutland, Denmark, and evaluated the impacts of pesticide
pplication, field size, crop heterogeneity, and weather on the skylark population present in
he modeled region. Calculated population-level endpoints included total population size,
umber of breeding pairs, and total number of birds successfully fledged.

The pesticides and herbicides typically used in the modeled region have relatively low direct
oxicity to birds. These chemicals were assumed to affect skylarks indirectly, through reduc-
jons in the availability of arthropod prey. Field size and crop heterogeneity affect skylarks by
pfluencing the diversity of vegetation types and growth stages present in the territory of a
spical bird, which in turn influence arthropod abundance and foraging success. Weather acts
irectly on the birds, influencing both incubation time, fledgling mortality, and foraging
CCESS.

Skylark populations were simulated over five 11y weather cycles under four combinations
f pesticide application patterns (used and not used) and field sizes (large and small). Impacts
of crop heterogeneity were evaluated by assuming that only a single crop (spring barley) is
ultivated throughout the region.

Results of the simulation showed that, although pesticide applications affected skylark
bundance, theé effects of pesticides were small compared with effects of landscape structure
and weather. Doubling the average field size reduced mean skylark abundance over the 55y
simulation period by 37%. Applying pesticides to the fields using label-specified application
tes and frequencies reduced skylark abundance by only about 4%. Variations in weather
onditions between years resulted in annual variations in fledgling production between +19%
and —13% compared with long-term average fledgling production. Assuming that only barley
s grown in the region resulted in dramatically lower skylark abundance, including extinction
of some or all model skylark populations.
~The authors concluded that, although pesticide use has potentially adverse impacts on
skylark populations in central Denmark, agricultural practices have a much greater influence.
ntensification of farming practices, including increased farm size and decreased diversity of
grops appear to be a more significant threat.

‘Rose et al. (2003) used an individual-based model to link laboratory observations of effects
of PCBs on Atlantic croaker to field data on coastwide abundance trends in this species. The
experiments providing the laboratory observations measured effects of PCBs on female
ndity, egg survival, larval swimming speed, and larval predator avoidance ability. The

i fynamics of the coastwide population were simulated using a matrix projection model similar
based system thal o those discussed elsewhere in this chapter. Adults were assumed to spawn in the mid-
p rotation pattern. Atlantic bight; larvae were assumed to migrate to nursery areas in North Carolina and
ipplication, w: Jirginia, and to return to the ocean as juveniles.

gerows, and othe ' The effects of PCBs on the behavior of Atlantic croaker larvae, which occur on time scales
: of seconds to hours, were linked to effects on the coastwide population, which occur on time
scales of months to years, using a model of the feeding, growth, and mortality of individual
Atlantic croaker larvae. The laboratory experiments measured effects of PCBs on larval
avoidance behavior and swimming speed. Larvae exposed to PCBs through maternal transfer
fom PCB-exposed adult females were found to swim more slowly and respond less actively to
Simulated predator attacks than were unexposed larvae. Rose et al. (2003) used a statistical
method referred to as a “regression tree” to translate the responses observed in the experi-
ment to a probability that a larva encountering a predator would escape predation. Reduced
wimming speed, in addition to reducing the probability that a larva would escape predation,
vould be expected to reduce the rate at which the larva would encounter zooplankton prey
drganisms. Hence, PCB exposure would be expected to result in reduced prey consumption,
Slower growth, and potential mortality due to starvation. The individual-based model used by
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Rose et al. (2003) simulates the daily activities of a larval Atlantic croaker from hatching t-(
transformation to the juvenile stage. It includes a bioenergetics submodel, a foraging syh
model, and a predation submodel. Parameters for these submodels are derived from a varjet

Cowan 1993; Rose et al. 1999). PCB effects were incorporated in the model through ‘J.;;
of predator avoidance and swim speed on the daily rates of mortality and growth. The dajl
mortality and growth rates, in turn, were used to modify the mortality and stage duratj'
parameters used in the matrix projection model. i

The matrix projection model was calibrated by adjusting the juvenile-stage mortality rates
so that, in the absence of PCB exposures, the population would be stable, with interannyai
variability in juvenile abundance being similar to the variability observed in long-ters
monitoring data collected in Virginia and North Carolina. PCB exposures were simulated
assuming that juveniles reared in North Carolina nursery areas are exposed during juven le
development, with effects expressed when the females spawn 1 to 2 y later. Fecundity and egg
survival in the model were reduced by values observed in the laboratory experiments. Thg
growth, development, and survival of PCB-exposed larvae were followed during the estuarine
nursery phase of the life cycle, with the predator avoidance and swim speed parameters
reduced according to the results of the regression tree analysis.

Two exposure scenarios were evaluated. In the first, females were assumed to be impaired
only during their first spawning, and to completely depurate their PCBs during thaj
spawning event. In the second, females were assumed to be impaired throughout their entirg
lifetime. ‘

Rose et al. (2003) found that, under the first-time-only scenario, the predicted effects e)
PCBs on the long-term abundance of Atlantic croaker were negligible. Under the lifetime
impairment scenario, long-term average abundance was about 10% lower than the baseline.
In addition to demonstrating that their model could be used to link behavioral toxicity data to
long-term effects on a population, the authors suggested that in the future, a better-verified
version of the model could be used to quantify cumulative impacts of multiple stresses, such
as PCB exposures combined with increased harvesting.

27.4 FUTURE OF POPULATION MODELING IN ECOLOGICAL
RISK ASSESSMENT

The examples discussed in this chapter cover a wide range of applications of populatio
models in ecological risk assessment. The first edition of this textbook suggested that projec-
tion matrices, stochastic extinction models, and individual-based models would in the future
be used in ecological risk assessments performed to support Superfund assessments, pesticide
risk assessments, natural resource damage assessments, and other types of regulatory activ=
ities. Research applications are clearly widespread, but applications of population models in
chemical risk assessment and management are still relatively uncommon. g
The US Environmental Protection Agency’s (US EPA) recent guidance on endpoints for r’
ecological risk assessments (EPA 2003) identifies several population-level endpoints (extirpa=
tion, abundance, and production) as being relevant to the agency’s assessments; however, the
agency’s primary focus is still on organism-level attributes such as morphological anomalies;
survival, reproduction, and growth (Chapter 16). The agency justifies this emphasis on the
grounds of legal requirements, regulatory precedents, and practicality. Laws and regulations;
are beyond the scope of assessment science; however, practicality is an issue that can bé
directly addressed through research, demonstration, and guidance development. 1
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:r from hatching A recent workshop on population-level ecological risk assessment (Barnthouse et al. 2006)

lel, a foraging sy entified a number of steps that could be taken to increase the use of population-level
iived from a var ethods in ecological risk assessments. The most obvious of these steps is development of
nused in an jidance documents explaining the availability, use, and interpretation of common modeling
il 1991; ols. Such guidance would cover the selection of models suitable for different types of

vdel through e sessment problems, methods for parameter estimation, and rules for model use and inter-
1 growth. The etation. Guidance on field data collection relevant to population-level assessment would
and stage duratj ely also be needed. Beyond technical guidance, broader guidance intended to inform risk
& ANagers, and stakeholders concerning how, and under what circumstances, population-level
sessment tools can lead to better environmental decisions. The workshop report includes a
amework for population-level ecological risk assessment analogous to the well-known
amework in the EPA’s guidelines (EPA 1998a), and also contains recommendations for
rporatmg population-level considerations in risk management decisions.
- Training and education are also 1mportant Risk assessment practitioners would benefit
. Fecundity and e ym enhanced opportunities for training in population ecology theory, empirical field and
y experiments, ¢ 0 ratory methods, and GIS technology. Beyond training programs, perhaps the best single
iuring the es ational activity would be actual application of population models in one or several high-
1 speed par 11e assessments. There can be no doubt that the widespread development and use of
i tapopulation models in conservation biology were enhanced by the use of these models to
med to be impai sess impacts of habitat fragmentation on the northern spotted owl. Similar case-specific
PCBs during ) ications involving environmental chemicals would educate both risk managers and the
>ughout their en gessment practmoners themselves concerning the benefits, limitations, and proper use of
sulation models in ecological risk assessments.
Bven though population models are not yet being routinely used in ecological risk assess-
ats, the integration of ecotoxicology and population biology that was envisioned by the
hors of this book 20 y ago has occurred. Approaches originally developed for use in
ce management and conservation biology and even for purely theoretical purposes are
ire, a better-verl v being applied in ecotoxicology. Equally important, young scientists and assessment
iltiple stresses, jctitioners are entering the field with the training and expertise needed to understand,
e j: nd advance these approaches.
; uture editions of this book, or maybe successors to this book, will very likely discuss
jcrete regulatory applications of population models, and will provide specific recom-
adations concerning the uses of these models based on successes and failures in on-the-
und applications.
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