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- variance in the eff viomatic that the biological effects of a chemical are a function of its structure. Hence,
f temporal va ian cal models have been used to predict the pharmacological effects of drugs, the intended
sffects of pesticides, and unintended toxic effects of these and other chemicals from their
iral properties. These models, termed structure—activity relationships (SARs), are used
mate effects when test data are unavailable. SARs may be qualitative, but the most
models are quantitative (QSARs). (QSARs are also used to estimate fate-related
ties; Chapter 22.)

s may be used to classify chemicals or to predict their toxicity. Chemicals may be
ed in terms of whether they possess some property such as carcinogenicity, estrogeni-
f teratogenicity. This information may be used to reject a chemical during development
Stration or to design tests by identifying potential test endpoints. Chemicals may also
ssified in terms of their mode or mechanism of action (MoA; Chapter 7). If a chemical
s of chemicals is fitted by a QSAR that is associated with a particular MoA, it is likely
fe that MoA. This information may be used as a basis for deciding that a concentration
on or dose addition model may be used to estimate the effects of mixtures of those
als (Chapter 8). MoAs include narcosis, respiratory uncoupling, and acetylcholinester-
aibition. Predictions of toxicity from QSARs may be used directly to quantitatively
e risks from untested or unreliably tested chemicals. Manufacturers use them to
ine early in the process of chemical development whether a new chemical is likely to
ignificant toxic properties. They are used in a variety of regulatory contexts inter-
ally, but are typically limited to screening applications (Cronin et al. 2003). For

ot cases, ecological risk assessments must be based on exposure-response data for
. life stages, levels of organization, and responses other than those specified by the
nent endpoints. In some cases, no €Xposure-Iesponse data are available for the agent of
m for any relevant organisms. For example, the endpoint is brook trout production and
ve only a fathead minnow LCso or only the structure of the chemical. Hence, it is
to use extrapolation models based on assumptions or statistical analyses to ex-
ate to the endpoint species or community or to estimate parameters for population or

tem models (Chapter 27 and Chapter 28).
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example in the US EPA, QSARs are used to screen industrial chemicals to determine whe, },
testing is required (Nabholz et al. 1997; Zeeman 1995). -

26.1.1 CHemicaL DomAINS FOR SARs

One of the more conceptually difficult aspects of SAR development and use is the identificatjg
of the domain, the range of chemicals from which a SAR should be derived and to which it Mz
be applied. The most common approach is to identify a chemical class that is considered o
homologous such as aliphatic hydrocarbons or phenols. Congeneric chemicals are homologgy
sets that have a common functional group, termed a toxiphore. Examples of toxiphores in
amine, hydroxy, sulfhydryl, and carboxyl groups. Examples of domains defined by the US
for screening industrial chemicals include aliphatic amines, dinitro benzenes, and phthalai
esters (Nabholz et al. 1997). Artificial intelligence-based algorithms have been used, in pla o8
expert judgment, to generate chemical classes based on toxiphores (Klopman et al. 2000).
Alternatively, domains may be defined in terms of the MoA of the constituent chemicy
(Drummond et al. 1986) (Chapter 7). This is more reliable than use of chemical classes, becaug
the members of a class may have different mechanisms of action (Russom et al. 1997). Hence
chemical may belong to a well-defined class, but its toxicity may not be predicted by the m
for that class. For example, phenols are often described as having a narcosis MoA (i. e, 1o
toxicity), but most phenols have other modes of action that are more toxic to fathead minnoy
(Figure 7.1). The difficulty in this approach is that a study must be performed to identify th
MoA. Some studies are capable of identifying multiple modes of action by reporting multip|
physical and physiological responses in whole organisms (Bradbury et al. 1989). Others identif
specific modes of action such as Ah receptor or estrogen agonists, often in vitro (Wenzel et a
1997; Schmieder et al. 2000). In vitro approaches must be used with caution because of th
potential for metabolism to alter the MoA. In addition, a chemical may have more than ,:
MoA, and the identified MoA may be secondary to an unidentified mode.

26.1.2 APPROACHES FOR SARSs

The basic approach is expert judgment. Judgment is always required, but in some cases it has
been used to develop systems of rules for assessing the activity of chemicals (Walker 199;
Karabunarliev et al. 2002). Judgment may be used quantitatively, but more often is use
qualitatively to predict that a chemical will have a particular property or to assign it o‘
category (e.g., likely to bioaccumulate). A quantitative example is the use of Judgmen 1
decide what tested chemical is most similar to the untested chemical; that chemical’s activi
data are then used as surrogates for missing data. ]

The most common approach to QSAR development is regression modeling. Toxic end
point values such as fathead minnow 96 h LCss for a set of chemicals are regressed again
some property of the chemical. The most common property in ecological QSARs is ti
octanol/water partitioning coefficient, K. It is broadly useful because, for a set of organl
chemicals with the same MoA, toxicity may be largely determined by the rate of uptak
which is in turn determined by hydrophobicity. A classic example is Konemann’s (1981E
model of 14 d LCs, for neutral organic chemicals and fish: 3

log (1/LCso) = 0.87 log Koy — 4.87

Subsequently, Veith et al. (1983) showed that for 96 h LCsos, the model must be nonlinearé
high values of K., because the slow uptake of the high-molecular weight chemicals inhibl
the attainment of a lethal internal level in an acute exposure:
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o deternnindil log LCsp = —0.9410g Ko + 0.9410g (0.000068 Ko, + 1) — 1.25 (26.2)

se models describe toxicity by the baseline narcosis MoA in fish (Section 7.1).
generic regression model for toxicity of organic chemicals is:

) log (1/C) = a(hydrophobic) + b(electronic) + c(steric) (26.3)
seis theiden
dand to whi : re C is concentration and a, b, and c are fitted parameters (Hansch and Fujita 1964;
atis consid ker and Schultz 2003). Hydrophobicity is usually represented by K,; electronic proper-
icals are homolog may include charge, pKa, quantum chemical descriptors, or others; and steric properties
of toxiphores inelg \de size and shape descriptors. Concentrations are usually expressed in terms of moles
fined bytclil : er than mass, because, for a particular MoA, effects are more related to the number of
zenes, an

ecules potentially reaching receptors than their mass.

man et al. 200 , £3  StATE OF SARs

constituent chenm .

current state of practice in ecotoxicological SARs is to use simple statistical approaches
elate effects to external exposure metrics (usually concentration) as in toxicity tests
Iker and Schultz 2003). This practice has been summarized in the US EPA ECOSAR
yare, which contains more than 100 SARs for more than 40 chemical classes
p://www.epa.gov/oppt/newchems/21ecosar.html). Further development is needed to in-
e more chronic effects and effects on more taxa, particularly terrestrial organisms. In
tion, greater acceptance of QSARSs for regulatory purposes will require more extensive
consistent quality assurance including greater transparency, better defined endpoints,
gcular descriptors, and domains, and more mechanistic bases (Eriksson et al. 2003). One
aution becal ) it in that direction takes a multivariate approach employing a large number of molecular
eriptors to classify chemicals as having similar or dissimilar modes of action and then
lops QSARs for prediction of effective levels (Vighi et al. 2002).

uture developments are likely to involve the development of a computational ecotoxicol-
analogous to current practices in pharmacology. SARs will be used to derive the
imeters of toxicokinetic and toxicodynamic models, which simulate the uptake, metabol-
distribution, excretion, and effects of chemicals (Yang et al. 1998). In advanced versions,
cular modeling of potentially toxic chemicals and the various receptors in organisms
ild allow the estimation of binding energies, which could be used to predict specific
cts, as in drug design (Raffa 2001). This is more difficult for toxicologists than pharma-
gists, because the receptors are seldom specified a priori. The Ah receptor, which is a
et of dioxin-like chemicals, is one of the few exceptions (Mekenyan et al. 1996).
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:’gg?la%eiof ‘,';; analyses of effects begin with a small set of data related to a few responses of a few

es and life stages and perhaps a few ecosystem responses. Somehow, assessors must
apolate from those few data to the entities and responses that constitute the assessment
points. Assumptions, factors, and statistical models are most commonly used for this
0se. Increasingly, mechanistic models are used to extrapolate to population and ecosys-
level endpoints (Chapter 27 and Chapter 28). In such cases, the effects parameters of the
’ must be estimated from the available data, and the same assumptions, factors, and
Stical models are used for that purpose. Numerous and diverse extrapolation models have
| developed, but their application has been somewhat haphazard, and there is no consen-
dbout which are appropriate.
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This section presents the major approaches for developing extrapolation models and thg
discusses the models that are used for particular media and taxa. Although each of g',
approaches is applicable to any assessment, different extrapolation approaches are
different contexts because of the constraints of available data and differences in the traditioy
of the different groups of toxicologists.

26.2.1 CLASSIFICATION AND SELECTION

It may be assumed that the endpoint species, life stages, and responses are equal to thoge |
the most sensitive reported test or in the test that is most similar in terms of taxonomy g
other factors. This process of classification and selection of test endpoints is the simplest an
most commonly used extrapolation method. Sufficient similarity must be judged on the bag
of some classification system. For example, plants are often classified by growth form, ap;
the EPA has classified freshwater fish as warm-water and cold-water species (Stephan et 3
1985). However, species are most commonly classified taxonomically. Studies based g
correlations of LCsos of species at different taxonomic distances indicate that for bot
freshwater and marine fishes and arthropods, species within genera and genera within fam
tended to be relatively similar, which suggests that they can be treated as equivalent, gi
testing variance (Suter et al. 1983; LeBlanc 1984; Sloof et al. 1986; Suter and Rosen 1988
The same conclusion was reached for terrestrial vascular plants (Fletcher et al. 1990)
Taxonomic patterns of sensitivity have been important in practice. For example, the obse
levels of DDT/E in peregrine falcons and bald eagles did not appear to be sufficient fg
account for reproductive effects, until testing was done on a member of the same orde;
(Lincer 1975). Other considerations in selection include the quality of the test, similarity ¢
the test conditions to assessed field conditions, and relevance of measured responses. 3

In effect this approach implies that the most sensitive or most relevant test organisms .?;

ability to ecological risk assessments beyond tox1cology For example, when assessing ¢
proposed introduction of a biocontrol agent, one would consider whether the tested potentia
nontarget hosts were adequate surrogates for the species, life stages, and exposure conditions
that could occur in the field. §

The advantage of this approach is its simplicity. One must choose the most appropriate
results in any case, and, by not applying any extrapolation model to the data, one avoids both
effort and controversy. The disadvantage is that the available test data are seldom credible
surrogates for the assessment endpoint response. Data selection is most defensible w
based on a strong body of evidence. For example, one can use the threshold dose fof
developmental failure of chicken embryos to estimate risks to birds from dioxin-like chem:
icals, because a relatively large body of evidence indicates that it represents the critical
response in birds, and chickens are a sensitive species (Giesy and Kannan 1998). '

26.2.2 FAcTORS

The next most common extrapolation method is to multiply or divide a test endpoint by @
numerical factor. These factors are referred to as assessment factors, extrapolation factors,
safety factors, and other terms. This extrapolation method may be treated as a formal
extrapolation model

Ee = aE’
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ment Factors Used to Estimate Concern Levels in the Assessment of Industrial
micals by the US EPA Office of Pollution Prevention and Toxics. The Lowest Toxic
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::'. complex set of factors, derived from this set, is used in Europe (CEC 1996).

jlation of chemicals are based on experience and judgment (Table 26.1) (OECD 1992,
man 1995). The mathematical form is chosen for its simplicity, and multiples of ten are
i to express order-of-magnitude precision. These factors have been often criticized, but
¢ have been useful to regulatory assessors and have withstood legal scrutiny.

Sometimes, multiple factors are used. One might, for example, use a factor for interspecies
erences, an acute/chronic factor, a laboratory/field factor, etc. These are nearly always
ted multiplicatively

E,=ajay - ay,E, (26.5)

4. n extrapolations incorporated. Multiplicative chains of safety factors imply that
jthing will go wrong together: the test species is maximally resistant relative to the
point species, there is a particularly large acute/chronic ratio, field conditions are par-
arly conducive to toxicity, etc. Because of this conservatism, such chains of factors are
often used than formerly. However, they have the advantage over single integrative
5 ors of clarifying what extrapolations are incorporated, and their potential conservatism
ita are seldo X A . S 5 :
most defensibie be appropriate for screening ass_essmgnts or when precaution is particularly desua}b]e.
he threshold 'd6 primary advantage of factors is their ease. We can all divide by 10, 100, or 1000 in our
Is. However, unlike simple data selection, factors allow adjustment for data inadequacies.
use of factors is widely accepted, and some have argued that there is no evidence that
¢ sophisticated extrapolation models perform any better (Forbes and Forbes 1993;
et al. 2001). Their primary disadvantages are that they are largely subjectively derived,
their use results in a value that is considered a safe level but is not clearly associated with
rticular effect (Fairbrother and Kapustka 1996; Chapman et al. 1998). Hence, they are
used in screening assessments (Chapter 31).

from dioxin-li
represents the ¢
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extrapolati
e treated as 2.3 Species SEnsITIVITY DISTRIBUTIONS

ies sensitivity distributions (SSDs), which were developed to estimate water quality stand-
that would protect some proportion of species, are increasingly used as extrapolation
in ecological risk assessments (Posthuma et al. 2001). SSDs are exposure-response
that are fitted to responses of species rather than organisms as in conventional toxicol-
(Chapter 23) (Figure 26.1). A percentile of the distribution of test endpoint values for
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FIGURE 26.1 An example of a species sensitivity distribution (SSD), a logistic function relatin '

proportion of aquatic vertebrate species responding to copper in soft and warm water (<60 mg/L an
>15°C). (Provided by Patricia Shaw-Allen. With permission.)

various species can be used to represent a concentration or dose that would affect
percentage of the exposed community. For example, if the 96 h LCs, values for fish exp
to a chemical are normally distributed (m,, s,), half of fish species in the field would be expe
to experience mass mortality after exposure to concentration m, within 96 h. This approach was
developed for deriving water quality criteria independently in the United States (Stephan etal
1985) and the Netherlands (Kooijman 1987). It has been repeatedly recommended as af
ecological risk assessment technique (OECD 1992; Suter 1993a; Baker et al. 1994; Parkhurs
etal. 1996a; EPA 1998a; Ecological Committee on FIFR A Risk Assessment Methods 1999a,b}

When SSDs are used to estimate levels of effects given an exposure level or to estimate th
level of exposure corresponding to a level of effect, logistic or other functions are usuall
fitted to them. The choice of function makes relatively little difference if the data are wel
ordered (OECD 1992). Distributions may be fitted and percentiles calculated by any statis
tical software used for exposure-response modeling (Section 23.1.2). If used to support ris
estimates based primarily on site-specific data or to support a causal analysis, an empiricd
distribution is simpler and adequate in most cases. Empirical distributions may even provid
better numerical estimates, because many data sets are not fitted well by parametric function$
(Newman et al. 2000). 4

The aggregation or partitioning of species in an SSD has been a topic of some debate. It
common practice in Europe to include all species, but the US EPA uses only multicelluld
animals to derive SSDs for water quality criteria, and others have advocated disaggregating
as much as possible (e.g., fish, arthropods, other invertebrates, and algae). Aggregation @
taxa in a common distribution provides more data with which to define the model. Howevel
different taxa have different sensitivities, particularly for chemicals such as pesticides wit
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"ed modes of action. In extreme cases, this leads to manifestly polymodal distributions
are 26.2). Hence, knowledge of MoA and taxonomic relationships should be used to
-mine whether and how to disaggregate a data set.

scause of their growing popularity, and because they are more technically sophisticated

is gibbosus 2
aponica  data selection or factors, SSDs have been subjected to detailed critiques of their
lirus eptual bases and practical implementation (Forbes and Forbes 1993; Smith and Cairns

). These concerns range from the practical (e.g., the minimum number of species) to the
septual (e.g., reasonableness of using a set of single species tests to represent a biotic
munity), and are discussed at length in Suter et al. (2002).

n advantage of SSDs is that they make use of all relevant and reasonably standard test
{ts. Further, an SSD can be readily interpreted as representing the distribution of
sonses of species in a community or a taxon. The chief limitations of this method are

——— Central tendency 74
§ ! = Malathion
- — -~ 95% Confidence intery 2 64
g
& %
=
10.00 E Y
: 34
istic function relating
rm water (<60 mg/L 3
; Pentachlorophenol

that would affe t
values for fish

Probit (proportion)
(6]

Fenitrothion

level or to estin
- functions are
ce if the data
Jdculated by an;
If used to supp
analysis, an €
ions may even
y parametric func

Probit (proportion)
(4]

Concentration (logyo mg/L)

URE 26.2 Species sensitivity distributions (SSDs) illustrating issues related to fitting standard
Ctions. The Malathion SSD is linear on a log probit plot so it is fitted by the standard log-normal
tibution. Pentachlorophenol has more highly sensitive and insensitive species than expected. Feni-
hion is bimodal, suggesting different modes of action or qualitatively different kinetics in different
(From Newman, M.C., Ownby, D.R., Mezin, L.C.A., et al. in Species Sensitivity Distributions in
toxicology, L. Posthuma, G.W. Suter II, and T.P. Traas, eds., Lewis Publishers, Boca Raton, FL,
2. With permission.)
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the requirement that enough species have been tested to define the SSD and that th
representative of the receiving community. When deriving water quality criteria, the
reqmres at least eight species from eight different families and they must be distributed aeg
taxa in a prescribed manner, but regulatory assessments in the Netherlands may use as
four species in an SSD. Relatively few chemicals have enough chronic toxicity data to estabj
the chronic SSD. Ingenious methods have been developed for developing SSDs when fey
are available (Aldenberg and Luttik 2002; deZwart 2002). However, these approaches :
significant uncertainty, so alternative extrapolation methods should be considered.
Another potential problem is that, if the media or the test conditions are variable §
influential, the distributions will include extraneous variance. That is, the distributig
broader than the species sensitivities, because it includes variance due to conditions an
protocols. In fact, one extreme interpretation of SSDs is that they represent testing error, ;
the inherent differences in sensitivity among species are negligible (Van Straalen 2003
Hence, attention must be paid to sources of variance and interpretation of SSDs. For aqueg
toxicity extraneous variance can be low. The test methods and endpoints for aquatic ﬁ;
effects are reasonably consistent, so methodological variance should be relatively
addition, variance in test water chemistry is relatively low, particularly when hardness andp
normalization or speciation modeling are used for metals and ionizable compounds
physical variance should be relatively low. For some chemicals, data are sufficiently abund;
that SSDs can be derived for defined ranges of conditions (Shaw-Allen and Suter 200!
However, for both sediments and soils test data are sparse and the testing and survey methg
and the endpoints are highly variable, the media have highly variable textures and chem
tries, and reliable normalization methods are not available. Therefore, the physical
methodological variances may be significant contributors to the effects distributio
sediments and soils. The methodological variance is extraneous; the physical variance
actual property of soils and sediments, and could be thought of as extraneous as
However, if one takes an ecosystem perspective, the distributions resulting from the coml
ation of biological and physical variance can be thought of as distributions of bentk
ecosystem sensitivity, soil-plant system sensitivity, etc. It would be highly desirable
disaggregate those sources of variance by standardizing methods and by normalizing §
and sediment concentrations (Chapter 22).
Although SSDs were developed to address chemicals, they can be adapted to assess otk
agents. For example, the percentage of wildlife species behaviorally responding to 2
overflights was related to slant distance to the aircraft (Efroymson and Suter 2001b).
SSDs may be interpreted in two ways (Suter 1993a, 1998a; Van Straalen 2002a). First, th
may be interpreted as distributions of the probability that a species will be affected @
particular concentration. Hence, at a concentration of 100 ug/L, the probability of effec S
any exposed aquatic species is 0.28 (Fxgure 26.3). Second, they may be treated as an estimé
of the distribution of sensitivities of species in the exposed community. Hence, at a con €
tration of 100 pg/L the proportion of the community affected by the exposure is 0.28 (F
26.3). The results are a probability in the first case when the endpoint is effects on
population, but in the second case, when the endpoint is a community property, the res
is deterministic.
The distinction may be clarified by analogy to exposure-response curves from convention
single species toxicity tests. The percentiles of those curves can be interpreted as probabill it
of effects on individuals or as proportions of exposed populations. The former interpretati€
which is used in human health risk assessments, is probabilistic, like the population-
interpretation of SSDs. The latter interpretation, which is more characteristic of ecol
risk assessments but is also used in human health assessments, is deterministic, like'®
community-level interpretation of SSDs.
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IGURE 26.3 Cumulative species sensitivity distribution function for acute toxicity of copper. The
urves are a logistic model fitted to the data points and upper and lower 95% prediction limits, generated
si g the Water Environment Research Foundation (WERF) software. (From Parkhurst, B.R., Warren-
. W., Cardwell, R.D., Volosin, J., Etchison, T., Butcher, J.B., and Covington, S.M., Aquatic
C Iogtcal Risk Assessment: A Multi-Tiered Approach, Project 91-AER-1, Water Environment Research
oundation, 1996b With permission.)
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: In ecological risk assessments for the Oak Ridge Reservation, the aquatic assessment
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n pomts were defined at the community level and the endpoint properties included reduc-
ons in species richness or abundance (Suter et al. 1994). Hence, the appropriate interpret-
_on is that the percentiles of the distribution are estimates of the proportion of specxes
responding to aircraf iffected. In assessments of risks to aquatic communities, actual measurements of fish species
1 Suter 2001b). chness and abundance as well as toxicity tests of ambient waters may be available. In such
tlen 2002a). First, they s, the SSD is used to determine which chemicals are likely causes of any observed toxicity
will be affected at r commumty degradation rather than to estimate risks. For attributing cause, empirical
-obability of effec distributions have been used and uncertainty analysis has not been judged important (Figure
treated as an esti 6.4). However, if the risks are characterized on the basis of analyses of the SSD, uncertainty
7. Hence, at a conce Should be quantified.
tposure is 0.28 (Figu The interpretation of SSDs is further complicated if uncertainty concerning the distribu-
\point is effects on fions is considered. Uncertainties concerning the percentiles of SSDs have been used to
'y property, the resul alculate conservative environmental criteria (Kooijman 1987; Aldenberg 1993; Aldenberg
ind Slob 1993) and to estimate risks as probabilities of effects (Parkhurst et al. 1996a,b). For
4 population endpoint, the percentiles of the distribution about the species sensitivity distri-
' tion are credibilities of a probability of effects on the endpoint population, i.e., we partition
iability among species from uncertainty concerning that variable parameter. Consider
Fi gure 26.3; the probability that a species will be affected at 100 p.g/L is 0.27 with a credibility
f 0.5 (the central line), but the upper 95% confidence bound indicates that there is a
bredibility of 0.025 (i.e., half of 5%) that the probability of effects is 0.46 or greater. This is
fonceptually equivalent to the output of a nested Monte Carlo simulation of an exposure
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FIGURE 26.4 Empirical cumulative species sensitivity distributions for acute toxicity to fish, aet
toxicity to aquatic invertebrates, and chronic toxicity to fish and invertebrates combined for zi
(From Suter, G.W., II, Efroymson, R.A., Sample, B.E., and Jones, D.S., Ecological Risk Assessy
Sfor Contaminated Sites, Lewis Publishers, Boca Raton, FL, 2000. With permission.)

model in which variability in exposure is partitioned from uncertainty. However, the

For a commumty endpoint, the percentiles of the distribution could be probabilities based:

the variability among communities or credibilities based on the uncertainty concerning #
distribution as a representation of community response. However, as in the population-Ié}
interpretation, the variance from the fit is an incomplete estimate of the actual uncertaini
The total uncertainty is a result of biases in the selection of test species, differences bet
laboratory and field sensitivities, and differences between the laboratory responses an
endpoint properties. Subjective uncertainty factors can be employed to estimate total
tainty, but these should be based on a careful consideration of the data in the distributio
their relationship to the site-specific endpoint. A factor of 10 can be considered minil
Research is needed to develop more objective estimates of the uncertainties concerning i
estimates derived from these distributions. 1

26.2.4 REeGRESSION MODELS

Regressions of one taxon on another, one life stage on another, one test duration on ano
one level of organization on another, etc. can be used to extrapolate among taxa, life stage
durations, or levels of organization. This approach is extremely flexible and quantitativel
rigorous but is seldom used. Regression models for aquatic extrapolations are presen
Table 26.2. More extensive discussions and examples of these methods can be found in'th
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LE 26.2
sar Equations for Extrapolating from Standard Fish Test Species

Il Bony Fish (Units are log pg/L)
species Slope Intercept N Mean F F PP

Invertebrate
—
acute values

phales promelas 1.01 —0.30 354 2.71 0.45 0.0006 131
mis macrochirus 0.96 0.17 500 2.52 0.49 0.0005 137
orhynchus mykiss 0.99 0.29 480 2.42 0.38 0.0004 1.20
inodon variegatus 0.97 0.03 51 1.25 0.58 0.0085 1.49

ce: From Suter, G.W., I1, Ecological Risk Assessment, Lewis Publishers, Boca Raton, FL, 1993a.
the 95% prediction interval at the mean, is log mean Y + the number in this column.

ies

rature (Suter et al. 1983, 1987; Barnthouse and Suter 1986; Sloof et al. 1986; Holcombe
1. 1988; Suter and Rosen 1988; Calabrese and Baldwin 1993; Mayer et al. 2004).

egression models provide an alternative to SSDs when data are few. If a test endpoint for
andard test species is available, the distribution of the endpoint for all fish species can be
mated from the equations like those in Table 26.2 that regress all fish species against a
ndard test species for multiple chemicals (Barnthouse and Suter 1986; Suter et al. 1987;
lcombe et al. 1988; Suter and Rosen 1988). The equations estimate the mean of log LCsq
saltwater fish from Cyprinodon variegatus 1.Csq or for freshwater fish from the standard
shwater species. The 95% prediction interval (PI) at the mean is log mean Y + PI. The Pl is
mated from the variance in LCsgs for other species (Y) at a given LCs, for a standard test

cies (Xo):

100

e toxicity to fish, acy
ates combined for z
rlogical Risk Assessm
sion.) ' var(Y|Xo) = Fi + F>(Xp — X)? (26.6)
. However, the unce ce the second term of the variance is relatively small, the PI at the mean is a reasonable
ation function to mate of the PI for all Y. That is, 95% of fish responses would be expected to fall within
‘tainty (Suter 1993 proximately + 1.3 log units or approximately a factor of 20 of the log-normal mean fish
probabilities bas ponse estimated from the equations.
tainty concerning A set of regression models for acute lethality to aquatic animals and terrestrial birds and
1 the population-le ammals with supporting software, Interspecies Correlation Estimations (ICE), have been
air ently pubhshed (Asfaw et al. 2003). They are more convenient and are based on larger data
§ than prior intertaxa regression models.
These intertaxa regression models were derived using data for a variety of chemicals. While
S makes them generically useful, it also increases the variance. It is likely that the models
Id be made more precise by limiting them to a single mode of action, since relative
iSitivities vary among chemical classes (Vaal et al. 1997).

5, differences be

ry responses and
estimate total -m
n the distribution @
considered minimk
inties concerning £ :
' -2.5 TeMPORAL EXTRAPOLATION OF ExPOSURE—RESPONSE MODELS

€Xposure duration increases, the concentration or dose necessary to kill an organism
"l nes to some minimum, the incipient lethal level. Hence, acute lethality tests can be
ed to estimate thresholds for effects in sustained exposures by extrapolating fitted expos-
&-response models to effectively infinite time (Mayer et al. 1994). A curve fitted to effects
icentrations or doses at multiple times (e.g., 24, 48, 72, and 96 h LCs, values) will approach
asymptote or reach an effectively infinite duration such as the maximum life span of the
ganism. If one also extrapolates to a low response level (e.g., LCq;), the corresponding

duration on an
10ng taxa, life stag
le and quantxta Vi
ions are presentet
can be found in
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concentration or dose may be interpreted as a safe level with respect to lethality for sustaing
exposures. Software—Acute to Chronic Estimation (ACE)—is available to perform s_ a
analyses using linear regression analysis, multifactor probit analysis, or accelerated life teg tin
theory (Ellersieck et al. 2003). This approach has the advantage of estimating a threshold g
chronic lethality without any chronic testing, but it requires that data for multiple a ut
durations be available. It also requires the assumption that the shape of the curve does ng
change at longer durations.
If data from multiple durations are not available, one may assume a relationship. Th
simplest is Haber’s rule, which assumes that the product of dose or concentration (C) an

time to effect (¢) is a constant (k) for a particular effect. Therefore, for any exposure duratiog
the effective concentration or dose is: g

C=k/t

This formula is commonly used for temporal extrapolation as well as to reduce the dimep
sionality of exposure-response models (Section 23.2.3), although it often poorly fits actug
temporal data and should not be used for extrapolations beyond a narrow range. The need
for this warning is obvious. Some concentrations are too low to cause an effect no matter how
long the exposure. A proposed alternative is Ostwald’s formula:

C=k/t

where a is a fitted constant. However, that formula requires either data fitting as in the ACE

approach or a presumption that the exponent derived for a similar chemical with the same
mode of action is applicable. 3

26.2.6 FAcTORrs DERIVED FROM STATISTICAL MODELS

Most factors are derived by expert judgment based on experience or simple reviews 0
relationships among general types of data (Section 26.2.2), but factors may also be derivet
by data analysis and associated with a particular extrapolation. Sloof et al. (1986) used the PI§
around regression models to derive uncertainty factors. Calabrese and Baldwin (1993) appliet
this approach to previously developed extrapolation models (Suter et al. 1983, 19§
Barnthouse and Suter 1986; Suter and Rosen 1988). Results for acute—chronic extrapolation
for defined chronic responses and intertaxa extrapolations are shown in Table 26.3 and Tabl
26.4, respectively. The reader should note that this method retains only the highly conserva
tive 90%, 95%, or 99% upper bound estimate of effects levels and not the best estimate.

The intertaxa extrapolations require some explanation. Suter et al. (1983) developed ar
approach for extrapolating between any test species and reference species that involved
aggregation of species within taxonomic hierarchies. Using a large data set of aquatic ac e
toxicity data, congeneric species were regressed against each other and then aggregated; next
genera confamilial were regressed against each other and then aggregated; after that familie
within the same order were regressed against each other. This process continued up o2
regression of the phylum vertebrata against the arthropoda. The increasing PIs on thes
regressions as the taxonomic distance increased was used to demonstrate that toxicologica
similarity is related to taxonomic similarity. Calabrese and Baldwin (1993) used a latéi
version of the regressions for fish taxa to reduce the regressions and PIs to 95% and 99%
uncertainty factors for each taxonomic relationship by calculating confidence intervals on the
set of PIs for pairs of orders of fish (Table 26.5). Calabrese and Baldwin (1994) later suggested
that these generic factors were applicable to taxa other than fish, including humans. Fo
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4 Confidence Interval
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Boxnistion (8 Hatch EC 31 26 50 198
a 25
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y exposure dura Parent mort ECys 28 18 32 106
Larval mort ECys 89 18 31 93
Eggs ECys 42 32 64 228
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Weight® EC,s 37 28 53 188

o reduce the dimer Weight/egg ECys 14 91 246 2247

:n poorly fits a ean 34 75 467

ow range. The 1 gighted mean 27 55 265

sffect no matter ]

-
3

(26,8 ssion analysis from Suter et al. (1987).

in weight of fish at end of larval stage.

urce: From Calabrese, E.J. and Baldwin, L.A., Performing Ecological Risk Assessments, Lewis Press, Boca Raton,
. 1993. With permission.
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xonomic Extrapolation: Means and Weighted Means for the 95% and 99% Prediction
ervals (Pls) for Uncertainty Factors Calculated by Calabrese and Baldwin (1994)*

Uncertainty Factor

1y also be de ariable YVal"iable . . n e 95% PI 99% PI
(1986) used the P : Taxonomic extrapolation: species within genera
iwin (1993) appl mo clarkii S. gairdneri 18 9 13
3t al. 1983, 198 clarkii S. salar 6 6 10
dnic extrapolatior clarkii S. trutta 8 6 8
ible 26.3 and Tal S. salar 10 7 11
ie highly con gairdneri S. trutta 15 4 5
best eatimalCoy ’ o melas f I”rul::am l; : :
9.83) develp ped : Epomis cyanellus L. macrochirus 14 6 9
?tle;f ?;l:anl,.;vo‘ ; ’;i dulus heteroclitus F. majalis 12 6 8
¢ 5 6 10
1 aggregated; ighted mean 6 7
after that fz j
:ontinued up Taxonomic extrapolation: genera within families
stlh:ft g}:j::lo corynchus Salmo 56 5 6
orynchus Salvelinus 13 4 5
993) used a Salvelinus 56 5 7
tO 95% and Cyprinus 8 4 6
::)l?t:wals onit Pimephales 19 7 9
ater sugge
ing humans. Ef Continued
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TABLE 26.4 (Continued) 7
Taxonomic Extrapolation: Means and Weighted Means for the 95% and 99% Predictj
Intervals (Pls) for Uncertainty Factors Calculated by Calabrese and Baldwin (1994)2

X Variable Y Variable n 95% PI
Cyprinus Pimephales 10 7
Lepomis Micropterus 30 8
Lepomis Pomoxis 8 9
Cyprinodon Fundulus 12 6
Mean 6
Weighted Mean 6
Taxonomic extrapolation: families within orders
Centrarchidae Percidae 47 10
Centrarchidae Cichlidae 6 -4
Percidae Cichlidae 5 13
Percidae Esocidae 11 9
Atherinidae Cyprinodontidae 32 7
Mougilidae Labridae 12 55
Cyprinodontidae Poecillidae 12 3
Mean 14
Weighted mean 13
Taxonomic extrapolation: orders within classes
Salmoniformes Cypriniformes 225 20
Salmoniformes Siluriformes 203 39
Salmoniformes Perciformes 443 12
Cypriniformes Siluriformes 111 11
Cypriniformes Perciformes 219 32
Siluriformes Perciformes 190 63
Anguiliformes Tetraodontiformes 12 13
Anguiliformes Perciformes 34 25
Anguiliformes Gasterosteiformes 8 16
Anguiliformes Atheriniformes 46 9
Atheriniformes Cypriniformes 7 501°
Atheriniformes Tetraodontiformes 46 13
Atheriniformes Perciformes 148 25
Atheriniformes Gasterosteiformes 36 20
Gasterosteiformes Tetraodontiformes 8 20
Gasterosteiformes Perciformes 33 32
Perciformes Tetraodontiformes 34 25
Mean 24
Weighted mean 26

Uncertainty Factor

*Values in this table are similar to, but differ from, those in Barnthouse et al. (1990) due to differences in the algo,.:
used, particularly the use of ordinary least squares regression by Calabrese and Baldwin (1994). ;
Not included in calculations.
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TABLE 26.5
Upper 95% Uncertainty Factors Calculated for the 95%

and 99% Prediction Intervals in Table 26.4

wnd 99% Pred
aldwin (1994)

Prediction Interval

ainty Factor
%o PI Level of Taxonomic Extrapolation 95% 99%

7 Species within genera 10.0 16.3

8 Genera within families 11.7 16.9

9 Families within orders 99.5 145.0

6 Orders within classes 64.8 87.5

g Source: From Calabrese, E.J. and Baldwin, L.A., Environ. Health Perspect., 102,

14, 1994. With permission.
10 3

4 mple, when extrapolating between a mouse test and equivalent effects on a mammalian
13 nivore (order Carnivora), one would divide the mouse test endpoint by 64.8 to be 95%

9 ain of including the carnivore species 95% of the time (Table 26.5).

7 An alternative approach was developed for the calculation of tier II water quality values
55 hapter 29). These values were derived by applying resampling statistics to the data sets used
li lerive water quality criteria to obtain distributions of the ratios of the lowest concentration
13 . small sample of toxicity data to the criteria values. Factors were derived from these ratios

f should protect 95% of aquatic invertebrate and fish species with 80% confidence. This
hod is best used to develop conservative screening benchmarks.
ig 2.7 ALLOMETRIC SCALING
12 er factors, the type of quantitative extrapolation model used most commonly by human
11 wildlife toxicologists is allometric scaling. These models are based on the assumption that
23 members of a taxon have the same response to a chemical, but they differ in size and in
i Cesse that'are related to size. The most commonly used allometric model is a power
25 ction of weight:
16

9 E,=aW® ) (26.9)

ne :
13 ere E, is the effective dose or concentration at some organism weight W. This model has
25 n adopted by toxicologists because the metabolism and excretion of drugs and other
0 micals are approximated by that function. The EPA and others have used the three-fourth
0 ver for piscivorous wildlife (EPA 1993f; Sample et al. 1996¢c). Allometric scaling may be
:i lied to aquatic species (Patin 1982), but it is used almost entirely for wildlife extrapola-
;4 15. Reviews of the theory and application of allometric scaling are provided by Fairbrother
;6 Kapustka (1996), Davidson et al. (1986), and Peters (1983).

Allometric scaling is simple to apply, and it has a stronger scientific basis than uncertainty
ors. If a toxic dose (D) and the body weights of both the test and endpoint species are
OWn and an appropriate scaling factor is selected, the toxicity .value for the wildlife species
y be calculated (Sample et al. 1996¢):

&

ifferences in the' f
994).

bw, 1-b
w
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Confidence in allometric scaling is limited because current models are based on a fg
chemical classes (i.e., mammalian values are based primarily on drugs, and avian values ap,
based primarily on cholinesterase-inhibiting insecticides). In addition, avian models are bz
on acute lethality. Because allometric scaling factors can vary widely among chemicaj
(Mineau et al. 1996), and because the toxic mode of action differs for acute and chropj
exposures to the same chemical, the current practice of applying the same scaling factors fg
all chemicals and types of exposures may produce inaccurate estimates (Fairbrother apg
Kapustka 1996).

26.2.8 TOXICOKINETIC MODELING FOR EXTRAPOLATION

Toxicokinetic modeling, which is used to estimate body burdens and internal exposure leve]
(Section 22.9), also provides a means of extrapolating among species or life stages based o
differences in physiology and the volumes of organs and other compartments. Toxicokinetjg
models are used to extrapolate rodent test data to humans (Clewell et al. 2002), but hayg
seldom been used in ecological risk assessments. The conceptual approach is shown in Fig
26.5. It begins with the results of a conventional toxicity test, such as a laboratory r:
reproductive test, expressed as the administered dose in mg/kg/d of the chemical of con
that causes a prescribed effect, such as 20% reduction in the number of viable pups
A toxicokinetic model is then used to estimate the corresponding internal exposure for the
female rat. This may be the concentration in a particular compartment such as blood bu
more likely to be a whole body concentration (mg/kg body weight). The internal concen
tion may be a peak concentration for a single dose or the equilibrium dose for a continuous
exposure. This must be converted into an equivalent effective internal dose for females of the
endpoint species (e.g., the internal concentration causing 20% reduction in the number of
viable mink pups). Toxicodynamic models could be used to represent the induction of effects
by the internal exposure (Section 23.3), but in practice, even in human health risk ass
ments, the effective internal concentrations are typically assumed to be equal. A toxicokin
model for the endpoint species is then used to convert the internal concentration to am
administered dose. This dose can then be related back to ambient concentrations in food of
abiotic media using exposure models (Section 22.9). 3

i Endpoint
Tee?ftei?ilvn;al animal
administered effective
dose administered
dose
Kinetic model Kinetic model p—
concentration
i Endpoint
Tee?fte?:rt]ilv"e‘al S animal
internal dose effective
internal dose

FIGURE 26.5 A process for using a toxicokinetic model to extrapolate between species.
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The primary problem with this approach is that it is data-intensive, and most of the
ysiological parameters needed for most species are unavailable or poorly developed.
wever, despite data limitations, Fairbrother and Kapustka (1996) suggest that the use of
en simple toxicokinetic models may &gmﬁcantly increase accuracy of interspecies extrapo-
jons. One solution to data limitations is to use allometric relationships to estimate the
ime scaling fact , ded parameters (Clewell et al. 2002). Another strategy is to focus on a few parameters that
ates (Fairbrother ag ‘_ kely to vary among species or organisms in a way that influences toxicity. For example,
qance in the toxicity of chemicals to fish may be largely controlled by weight, the ratio of
| area to weight, and, for hydrophobic chemicals, by fraction of weight composed of fat
assiter and Hallam 1990). That is, when exposed to hydrophobic chemicals, big, fat,
egish fish are most likely to survive.
Toxicodynamic models that relate internal exposure to response (Section 23.3) also have
potential to contribute to extrapolation among species and life stages. However, they are
ch less developed for that purpose than toxicokinetic models.
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5.2.9 MuLTipLE AND COMBINED APPROACHES

ese various potential methods for extrapolating toxic effects among species and life stages
ce traditionally been applied independently and not in a systematic manner. Fairbrother
d Kapustka (1996) suggested that less reliance be placed on a single approach (e.g.,
ometric models) for all species and chemicals and that multiple approaches be applied to
> problem of wildlife extrapolation.

To address all of the important extrapolations in an assessment, it is often necessary to
mbine approaches. For example, SSDs are used to extrapolate from individual species to
mmunities, but the test endpoints used in the SSDs often do not represent the assessment
dpoint. Hence, the individual species values for the model may be adjusted. For example, in
an health risk as culating the acute ambient water quality criteria, the US EPA applies a factor of 2 to the
:qual. A toxicoki b percentile of the SSD of acute values to extrapolate from 50% mortality to a small

concentration to ccentage (Stephan et al. 1985).
sentrations in food i

EXTRAPOLATIONS FOR PARTICULAR BIOTAS

1 AqQuartic Biota

as is often the case, the endpoint property for the aquatic biota is species rlchness or diversity,
D is an obvious choice of extrapolation model. Modeling results show that continuous
posure to concentrations equal to the chronic value (CV) for a species can cause extinction
hat species (Barnthouse et al. 1990). Therefore, the proportion of species for which the CV is
ceded by long-term exposures can be assumed to approximate the proportion of species lost
m the community. In addition, because toxicity data are relatively abundant for aquatic
ganisms, it is often feasible to derive such distributions for individual chemicals. As discussed
ove, the SSD approach is widely accepted, because it is used for the derivation of water quality
eria. If responses are known to be a function of water chemistry, the individual test endpoints
Juld be normalized to appropriate water chemistry before defining the distribution.

f the endpoint is a property of a particular population rather than a community, the
rapolations using SSDs are performed or interpreted differently. SSDs are still useful
ause they can be interpreted as probability distributions for effects on an individual species
Ction 26.2.3).

Alternatively, one can extrapolate between species by using the appropriate intertaxa
fession models or the uncertainty factors derived from them (Table 26.4 and Table 26.5).

sure model

mbient
rentration

species.
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That is, if one wanted to predict the toxicity of a chemical to brook trout (a salmonid) from
test data for fathead minnow (a cyprinid), one could divide by 20 to be 95% certain of 8
underestimating the sensitivity of brook trout (or any other salmonid). If the desired tz e
nomic regression is not available, the appropriate generic factor (which would be 26 in hi
case of an interorder extrapolation) would be applied. These two approaches for estimating
effects on particular species or taxa (SSDs and taxonomic regressions) have different weaks
nesses, and it is not clear which works better in practice. However, the taxonomic regressiong
and the factors derived from them require test data for only one species, so they are
generally useful. The factors are conservative and may estimate effects levels that are
background. For estimation of probabilities of effects, one should use the original regressiog
models to estimate means and variances (see Table 7.4 in Suter 1993a). E

Allometric models may also be used to extrapolate to specific aquatic species (Patig
1982; Newman and Heagler 1991; Newman et al. 1994). This approach has not been acceptey
in practice, because taxonomic differences have been perceived to be more important tha
size. At least, it seems likely to be useful for extrapolation among taxonomically similag
species. 3

Acute—chronic extrapolations may be made with regression models or factors. Acute
chronic regression models for aquatic fish and invertebrates are presented in Suter (1993a)
and factors derived from them are presented in Table 26.3. These factors are based o
including the CV or EC,s with 95% or 99% confidence. Alternatively, CVs can be estimated
with 80% confidence of not overestimating their value using a factor of 18 (Host et al. 1991),
Calabrese and Baldwin (1993) recommend generic 95% and 99% uncertainty factors of 50 and
200 for acute—chronic extrapolations, based on the weighted means in Table 26.3. Analysis of
a European data set yielded various acute/chronic factors including a 90% confidence LCs e
no observed effect concentration (NOEC) factor for organic chemicals and aquatic animals of
24.5 (Lange et al. 1998). Any of these factors are adequate if one is trying to conservativels
estimate a chronically toxic concentration of a chemical in a screening assessment or
support an assessment based primarily on other lines of evidence. If acute lethality data are
available for at least three exposure durations, extrapolation to low response rates and long
durations can be used to estimate lethal thresholds (Section 26.2.5). If compelled by circums
stances to estimate risks to aquatic organisms using only an LCsp, one of the regressiof
equations in Suter (1993a) or Sloof et al. (1986) with its associated uncertainty should providé
a better estimate of the chronic effects threshold than a conservative generic factor. '

In some cases, multiple extrapolations are required including those between taxa and li
stages. Such multiple extrapolations may be dealt with by chains of factors or by chains of
regression models (Barnthouse et al. 1990; Calabrese and Baldwin 1993; Suter 1993a)
Thresholds for lethality obtained by temporal extrapolation (Section 26.2.5) may be con:
verted to estimates of thresholds for reproductive and other sublethal effects by multipl ing
by a factor of 0.1 (Ellersieck et al. 2003). However, methods for multiple extrapolations azé
not explained in detail here. f

Mechanistic models, particularly the biotic ligand model (Section 22.2), are beginning to b8
used in aquatic ecological risk assessments. They can be used to extrapolate among water
chemistries and, potentially, among species and life stages. :

26.3.2 BENTHIC INVERTEBRATES

Species or community sensitivity distributions can be derived for toxicity of individual
chemicals to benthic invertebrates based on published test results. In the case of exposule
of benthic invertebrates to sediment pore water, the effects distributions are the same as the
SSDs for aquatic biota. The use of aqueous data to evaluate effects on benthic species is based




©ological Risk Assgsgry jism-Level Extrapolation Models 375

-out (a salmonid) f
be 95% certain of
1). If the desired ¢
ch would be 26 in
roaches for es .,‘;.}
;) have different w

ata suggesting that benthic species are not systematically more or less sensitive than water
an species (EPA 1993a).

the case of exposure of benthic invertebrates to chemicals in whole sediment, the effects
butions are for species/sediment combinations and community/sediment combinations.
is necessary because it is not possible to adequately control for the effect of sediment
scteristics, including co-contaminants in field-collected sediments, on toxicity. The most
inent examples of effects distributions for benthic invertebrates are those used to derive
ning benchmarks for sediment-associated biota (Long et al. 1995; MacDonald et al.
). The effects in those distributions include taxa richness, diversity, density, mortality,
th, respiration, behavior, and suborganismal effects. As a result, those distributions only
ate an unspecified level of an unspecified effect. This is adequate for screening purposes,
not for definitive risk characterization. For definitive assessments, such nonspecific
ibutions can be parsed into distributions of thresholds for specific effects. For example,
s et al. (1999) developed distributions of community-level effects and lethality from the
nent toxicity data presented in MacDonald et al. (1996) and Long and Morgan (1991).
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WILDLIFE

dlife risk assessors have followed health risk assessors in using uncertainty factors (e.g.,
ton et al. 1996, Sample et al. 1996c, Hoff and Henningsen 1998). As in health risk

f 18 (Host et al. ssments, uncertainty factors are used to account for specific extrapolations such as
ainty factors of 50 3 ecies, acute—chronic, laboratory—field, lowest observed adverse effect level/no ob-
lable 26.3. Analysis ed adverse effect level (LOAEL-NOAEL). A general extrapolation model for wildlife
)% confidence L been proposed by Hoff and Henningsen (1998):

fiv D,, = D,/(UF, * UFy + UF, » UFy) (26.11)

Or

ling assessment ;
re D,, represents the estimated critical chronic dose for an endpoint wildlife species, and

cute lethality data'@

sponse rates and [o s the literature-derived toxicity value for the test species. UF, accounts for intertaxon
compelled by circu jability and can range from 1 if the test and wildlife species are the same to 5 if the test and
one of the regressi dlife species are in the same class but in different orders. Uncertainty in study duration is
rtainty should pro¥: resented by UF,, which ranges from 1 to 15 for the range from chronic to acute. UF,

eneric factor. =
between taxa and |
ictors or by chains

1993; Suter 1993

26.2.5) may be c@
effects by multiplyif
ple extrapolations

ounts for the type of toxicity data available and ranges from 0.75 for NOELSs to 15 for
ere or lethal effects (>EDs). Finally, UF,; addresses other modifying factors (e.g., species
sitivity, laboratory—field extrapolation, intraspecific variability) and may range from 0.5 to
Hoff and Henningsen (1998) recommend reporting quantitative risk results only if total UF
00. For total UF > 100, only qualitative (e.g., presence/absence, low, medium, high)
iimates of risk should be reported. As with other uses of multiplicative factors, this model
fers from inappropriate error propagation and poorly defended factors. However, it is
livalent to current practice in human health risk assessment.

Allometric scaling has been commonly applied to wildlife as well as humans. Factors of
6 to 0.75 have been used for extrapolating from laboratory test species to humans and
dlife (EPA 1992c, 1993¢; Sample et al. 1996¢). Use of either the 0.66 or 0.75 scaling factor is
iservative for humans and most endpoint mammalian wildlife in that large species such as
5" -are estimated to be more sensitive than the rodents, which are typically used in mam-
lﬂ toxicity testing. However, small wild mammals are estimated to be less sensitive than
Joratory rats or dogs. Common avian test species such as chickens and mallard ducks are
ICh larger than most birds.

Use of allometric models for birds with the same exponents as mammals was supported by
Ometric models of avian physiology and pharmacology (Peters 1983; Pokras et al. 1993). In
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contrast, allometric regression analyses of 37 pesticides on 6 to 33 species of birds found thg;
for 78% of chemicals the exponent was greater than 1 with a range of 0.63 to 1.55 and a meg,
of 1.1 (Mineau et al. 1996). Because of that mean and because scaling factors for the majoriy
of the chemicals evaluated were not significantly different from 1, a scaling factor of 1 appeag
to be appropriate for interspecies extrapolation among birds (Sample and Arenal 1999
However, because of the apparently chemical-specific character of scaling factors, Sam; :g;',
and Arenal (1999) provided such factors for 138 chemicals for acute lethality to birds and 9
to mammals. In the absence of a scaling factor for the chemical of interest or-for a similag
chemical, they recommend generic factors of 1.2 for birds and 0.94 for mammals. Scalig
factors should be developed for chronic exposures and for effects other than lethality.

SSDs have been recommended for assessment of risks to birds (Baril et al. 1994; Ecologicg]

geometric means, across chemicals, of the ratios of LDsgs for common test species to the
TLDs (the 5th percentile of the avian SSD) (Table 26.6).

Regression models are also potentially useful for wildlife. Intertaxa regressions are avails
able for avian and mammalian wildlife species and families (Asfaw et al. 2003; Mayer et al
2004). Because there are no avian test results for most chemicals, regressions of availablg
avian data against rat data allow the use of the much more abundant data for laboratory rats
For example, regressions of ring-necked pheasant LDsps and mallard duck LDsgs against raf
LDsgs for 24 organophosphate cholinesterase-inhibiting pesticides were used to assess risks tg
birds from disposal of organophosphate cholinesterase-inhibiting chemical warfare agen
(Sigal and Suter 1989). The result for mallards was:

log mallard LDsy = 1.33(log rat LDsp) — 0.58

(* = 0.47) indicating that mallards are more sensitive than rats to these chemicals. Ph
sants, however, were about equal in sensitivity to rats. :

26.3.4 SoiL INVERTEBRATES AND PLANTS

Regression models were developed for pairs of plant taxa by Fletcher et al. (1990). For each of
16 chemicals, ECsos of between 7 and 36 plant species were compared. The variation in
sensitivity ranged from 3.5-fold for linuron to 316-fold for picloram. Out of almost 300
chemical-plant species combinations, 59% of ECses varied by less than a factor of 5 from
other ECs¢s for the same chemical. Plants that were closely related, taxonomically, had
similar sensitivities to the same chemical. No trends in the relative sensitivity of various
species, genera, or families to different chemicals were observed. In this study interspecies
variability in toxicity was much higher than the variability associated with the extrapolation
from greenhouse to field. Hence, when assessing risks to a particular plant species, it i$
apparently more important to use data for a similar species than for similar condition
However, these results are based on foliar applications of herbicides. 3
Since assessment endpoints for soil invertebrates and plants usually include community
properties, SSDs would seem appropriate. The OAK Ridge National Laboratory (ORNL)
benchmarks for exposure to contaminants in soil used SSDs for earthworms and plan;
(Efroymson et al. 1997a,b) (Figure 26.6). Because the variance of toxicity among soil§
can be significant and cannot be factored out, soil type is a source of variability in thesé
distributions. Hence, the points in Figure 26.6 are species—soil type combinations, and
the distribution is the distribution of effective concentrations across species and soils. As &
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FIGURE 26.6 Cumulative distribution of LOECs for plants exposed to zinc in soil. Effects included are
changes in the mass of whole plants of plant parts. (From Suter, G.W., II, Efroymson, R.A., Samplé]
B.E., and Jones, D.S., Ecological Risk Assessment for Contaminated Sites, Lewis Publishers, Boca
Raton, FL, 2000. With permission.) 3

result, single plant species that are tested under different conditions have different LOECs in
the distribution. An untested species in a particular soil may be assumed to be a random draw
from the distribution, or the distribution may represent the proportion of species in a plant
community that is likely to be affected by a particular concentration of a chemical given
uncertainty concerning the influence of soil type. That uncertainty is reduced in the Nether
lands by normalization to reference soil (Sijm et al. 2002). ‘ :

26.3.5 SoiL PROCESSES

In the Netherlands, distributions of toxicity values for microbial processes and enzymatic
activity are used, along with SSDs, to derive regulatory values for soil (Crommentuijn et al,
2000; Sijm et al. 2002). Studies of the same process in different soils are treated as separa
observations, i.e., each soil ecosystem is considered equivalent to a species in an SSD. The

NOEC and ECx concentration are normalized to standard soil to minimize the effects of soil
chemistry on bioavailability and toxicity.

26.3.6 WATER CHEMISTRY

The properties of ambient and test waters such as salinity, pH, and hardness can influence the
forms of chemicals to which organisms are exposed and the sensitivity of aquatic organisms to
the exposure. The differences between test waters and waters to be assessed may be addresse d
in various ways. The simplest is to use data from tests conducted in waters that are similar {0
site water, but this raises the question of sufficient similarity. The question is particularly
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k for the case of extrapolation from freshwater to saltwater. Few toxicity data are
ilable for saltwater relative to freshwater, but there are few test data from freshwater
iments relative to estuarine sediments. Analyses have shown that the differences are small
ative to the differences among species (Klapow and Lewis 1979; Hutchinson et al. 1998;
Zwart 2002), but these differences may be important (Stephan et al. 1985; Hutchinson
al. 1998).

[he second approach is to perform a standard test in site water and in standard test water
d use the ratio of the results to adjust a water quality criterion or other test data for the
ects of site water chemistry. Guidance for deriving and applying this water effect ratio is
ovided by the US EPA (Office of Science and Technology 1994, 2001).

A third approach is to model the influence of water chemistry. One example is the use of
pirical models to adjust metal toxicity data for water hardness using regressions of LCsgs
gainst test water hardness (Stephan et al. 1985; Pascoe et al. 1986). Metal speciation models
ave been used with the biotic ligand model to adjust the toxicity of certain metals for
fferences in the chemistry of freshwaters (Section 22.2).

Wheat
rice

;3.7 SoiL PROPERTIES

fie risk assessor should be aware that bioavailability in soil from the contaminated site may
bstantially different from the bioavailability in published soil tests. As stated in Section
24.1, aged organic chemicals are typically less available and less toxic to biota than
rganic chemicals freshly added to soil in published toxicity tests (Alexander et al. 1995);
ius the toxicity at the contaminated site may be overestimated if a published toxicity test of
chemical freshly added to soil is emphasized too heavily in the assessment. The risk
ssessor can make adjustments to observed toxic concentrations to account for differences
1 soils or chemical speciation. The variance in toxicity among natural soils may be reduced
y normalizing the test soil concentrations to match normalized site soil concentrations
Section 22.3) (Sijm et al. 2002). Or free metal activities in soil solution may be estimated,
otentially improving the precision of toxic thresholds for plants, soil invertebrates, or
licrobial processes (Sauvé 2001). The assessor may be more liberal in including tests in
Creening assessments (e.g., in the derivation of screening benchmarks) than in definitive
Ssessments. In definitive assessments, soil type and chemical speciation should be factors in
ecisions about the acceptability of data. -
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26.3.8  LABORATORY TO FieLD

Many studies have been conducted attempting to relate conventional laboratory toxicity test
esults to responses in the field. Unfortunately, most of them have been intended to test the
validity of laboratory toxicity data rather than to generate extrapolation models. The simplest
formulation of the validation problem is, do classifications of field sites as impaired or
Inimpaired correspond to the classifications predicted from standard laboratory tests? The
fesults of these attempts at validation are ambiguous at best, largely because field studies do
10t provide “true” results as a standard for comparison. Field experiments and biological
irveys are highly inconsistent in their design and endpoints; they are pseudoreplicated,
poorly replicated, or unreplicated; they typically include only one season; although they

sses and enzymatie
“rommentuijn et al
treated as separal (
ies in an SSD. The
e the effects of soil

s

§ can influence the Often include multiple responses, they miss many taxa, attributes, and processes; and they
uatic organisms t0 fend to be insensitive, so that when effects are found they are often severe (Neuhold 1986;
may beafi' S -1apman 1995; LaPoint 1995; Luoma 1995; deVlaming and Norberg-King 1999). Because
that are similar t0 Mechanistic understanding is usually lacking, it is unclear whether deviations from expect-

on 18 particularl itions are due to failure of the laboratory tests as predictors or to factors that are not relevant
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to evaluating the validity of a test. In addition, biological surveys are subject to confound .'
by differences among sampling locations other than the laboratory-tested toxicants. '
Despite the difficulties, reviews of comparisons of laboratory and field studies typi _ii
conclude that when ambient dilution water or sediment is used, laboratory toxicity is usuall
indicative of field effects, and even tests with standard laboratory water are generally relateg
to field effects (deVlaming and Norberg-King 1999; Long 2000). When laboratory and fj
results disagree, it is not clear that the laboratory test is erroneous. Even when they agree, i
not clear that the agreement is due to actual mechanistic correspondence. For example, fj
effects may be due to low dissolved oxygen rather than toxicity. Better comparison
possible when consistent endpoints are used (e.g., percentiles of SSDs for invertebrates iz
laboratory and ditch mesocosm tests), but even then generalizations about the vahdlty.;
laboratory tests are elusive (van den Brink et al. 2002). 4
An alternative approach to the relationship between laboratory and field test results is fg
simply regress the former against the latter. Sloof et al. (1986) regressed NOECs from aquatig
mesocosm tests (NOEC,) against the lowest reported single species acute LCso or ECsq ang
against the lowest reported single species chronic no effect concentration (NOEC;) for the
same chemical and obtained: 3

log NOEC, = —0.55 + 0.811log LCs
log NOEC, = 0.63 + 0.85log NOEC;

The units are pg/L, the correlation coefficients are 0.77 and 0.85, respectively, and the
arithmetic-scale PIs are +0.86 and 0.35, respectively. The authors concluded that the mos
sensitive responses in the mesocosms are more sensitive than the most sensitive acute letha ity
test but less sensitive than the most sensitive single species chronic test. Emans et al. (19
derived a model similar to Equation 26.14, using different data selection criteria. Th
concluded that organisms in field conditions responded at concentrations similar to th
that affect species in the laboratory. Although these models would not accurately predid
effects in particular cases, they could be used to suggest the approximate range within whi h
effects would be expected in field systems. They also suggest that although more species afé
exposed in the field and indirect effects and complex exposures occur in the field that do nol
occur in simple laboratory aqueous tests, the chemicals that are most toxic in the laborat
are also most toxic in the field and thresholds for effects are not greatly different, so toxicity i
the ecosystem context is not completely unpredictable. d

When developing empirical models of field effects, it is important to select field data that
are measures of the assessment endpoint, because different community and ecosystem reé
sponses have very different sensitivities. Even different community metrics derived from
same data set can give very different relative sensitivities. For example, the sediments of th
Louisianian province were most affected of three EMAP coastal provinces based on a benthi€
index score, least affected based on species richness, and intermediate based on infaunal
abundance (Long 2000).

One can certainly imagine more sophisticated and potentially more predictive approaches
to empirically modeling the relationships between laboratory and field responses. In partict
lar, the use of chemical speciation models or toxicokinetic exposure models to normalize fie d
and laboratory contaminant concentrations, the use of tests with more life stages and
responses, and the use of body burdens as measures of exposure are likely to improv&
predictions. However, more progress may be obtained using laboratory data with mechamstf
models of exposure (Chapter 22), population dynamics (Chapter 27), and ecosystem processes
(Chapter 28).
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ect to confounding %6.4 SUMMARY

| toxicants. :
Id studies typically gince the first edition of this book was published in 1992, the situation has changed little with
y toxicity is espect to extrapolation models for estimating risks to attributes of nonhuman organisms.

'he use of SSDs has become common, but otherwise most assessments still rely on selection
f most relevant data and the occasional factor. There is no consensus that this actually
enresents good practice or that a particular alternative is preferable. Looked at positively, it
sives assessors considerable freedom to select the approach that seems best to them, or to
jevelop new approaches.
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