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5 Variability, Uncertainty,
and Probability

We wish truth, and we find only uncertainty.
Blaise Pascal

Risk is conventionally understood to be related to the concepts of uncertainty and probability
(Chapter 1), because risk is derived from a sense that the future is imperfectly or incompletely
known. Uncertainty concerning the future may be due to inherent randomness (e.g., quantum
indeterminacy), effective limits on knowledge of future conditions even in deterministic
systems (chaotic systems or simply the limits of data collection and analysis), or simple lack
of knowledge (ignorance). The concept of probability and the related concepts of uncertainty,
variability, likelihood, error, credibility, etc. are sources of confusion and controversy, which
lead to linguistic uncertainty. Most environmental scientists are aware of two schools of
statistics with different concepts of probability: Frequentist and Bayesian. Many are not
aware that there are other approaches such as information-based statistics (Burnham and
Anderson 1998, 2001) or evidence-based statistics (Taper and Lele 2004), or that many
statisticians consider their field to be in need of a conceptual revolution (Gigerenzer et al.
1989; Salsburg 2001; Royall 2004). This chapter will avoid most of these issues by sticking to
approaches that are in reasonably common use. Those who are uncertain about probability
should consult Hacking’s (2001) marvelously clear text. Those who want specifics about how
quantitative methods are used in risk assessment might consult a text on quantitative methods
in risk assessment such as Vose (2000), Burgman (2005), and Warren-Hicks and Moore (1998).

5.1 SOURCES OF UNPREDICTABILITY

We speak of risks and analyze probabilities because we wish to predict the future but realize
that we cannot know the future. This is due to variability and uncertainty and to unquantified
or unacknowledged factors.

5.1.1 VARIABILITY

Variability is the property of sets of entities or events that differ in some significant way.
Examples include daily rainfall, weights of red foxes, or concentrations of a chemical in an
effluent. Variability may be observed and estimated, but it cannot be reduced, because it is an
inherent property of the system. Observations of a variable trait result in a distribution of
frequencies of that trait. The response to variability is to form probabilities or equivalent
€Xpectations concerning that trait. Variability is an objective property of entities and events,
80 objectivist concepts and frequentist methods dominate its analysis. However, subjective
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concepts and Bayesian methods are also used. In particular, not all variable traits are
observed, so personal or expert judgment may be employed to estimate probabilities of
variable traits.

5.1.2  UNCERTAINTY

Uncertainty is the lack of knowledge about a system. Unlike variability, it can be reduced by
obtaining additional information. The responses to uncertainty are to form beliefs or suspend
judgment until data can be generated. In probabilistic analyses, beliefs, like variability, should
be expressed as distribution functions. However, they are commonly expressed qualitatively
using terms such as likely, credible, and reasonably certain.

When mathematical models are considered to simulate a real-world phenomenon, and not
simply describe a data set, issues of model uncertainty arise that go beyond simple lack of fit.
Uncertainty concerning the parameters and forms of mathematical models is a difficult issue
that is usually acknowledged without being quantified (Risk Assessment Forum 1996). Model
uncertainty includes issues such as linearity, the inclusion of thresholds, the aggregation of
species into trophic levels, and the inclusion of feedback processes. Like parameter uncer-
tainty, model uncertainty can be reduced by research, but it is often more difficult than simply
measuring a parameter. Research to resolve model uncertainties typically must address
the mechanisms underlying the modeled processes. When there are multiple credible models,
model uncertainty can be estimated from the variance among model results; otherwise it can
be estimated from the variance due to changes in individual assumptions of a model (Gardner
et al. 1980; Rose et al. 1991). '

5.1.3  VArIABILITY UNCERTAINTY DicHOTOMY

The distinction between variability and uncertainty as aspects of unpredictability dates to the
carliest writing on probability (Hacking 1975). The pair is more properly referred to as
Aleatory (having to do with accounting) and Epistemic (having to do with how and what
we know), but that terminology has not caught on (Hacking 2001). It is also tied to the two
sources of probability: variability produces frequency-type probability and uncertainty pro-
duces belief-type probability, although the connection is not necessary or consistent. In
particular, subjectivists treat all probabilities as beliefs, even those that arise from variability
among entities or events.

The variability/uncertainty dichotomy has become conventional in environmental risk
assessment (MacIntosh et al. 1994; McKone 1994; Price et al. 1996; Risk Assessment
Forum 1997; Science Policy Council 2000; Linkov et al. 2001). It has practical as well as
conceptual importance.

Variability is a property of the system while uncertainty is a property of the observer: This
distinction is important to decision makers and stakeholders. In health risk assessment, this is
reflected in the desire to know the range of responses of humans and the sources of that
variability. Uncertainty concerning that variability is a secondary concern. Similarly, in
ecological risk assessments we may be interested in the range of responses of populations or
ecosystems due to variability in their exposure and sensitivity. We may then be concerned
about our uncertainty concerning those estimates.

Variability is irreducible while uncertainty may be reduced by research: We cannot change
the inherent variability in sensitivity to cadmium within a set of organisms or of species, but

~ we can reduce our uncertainty concerning that variability by performing toxicity tests.
Uncertainty about the magnitude of a constant such as the solubility of a chemical can be
reduced as well. This distinction is clearly important when performing sensitivity analyses to
decide how to allocate funds for measurement and research.
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 [Estimates of variability can be directly verified but estimates of uncertainty cannot. Hence, if
we estimate the distribution of a variable parameter, such as stream flow or invertebrate
density, we can verify that estimate by taking measurements of flow or density over an
_ appropriate temporal or spatial sampling frame. We can do the same for model-generated
~ estimates. Consider, for example, a case in which we predict the proportion of fish species that
will be affected if an effluent is released. We may estimate variability in exposure by
toxicokinetic modeling and variability in sensitivity using a species sensitivity distribution.
_ The resulting estimate of the proportion of species affected could be verified by monitoring if
the effluent is permitted. In contrast, the uncertainty about a prediction cannot be verified,
but a series of predictions may allow assessors to determine whether they have in fact over- or
underestimated their uncertainties (Section 5.2.1).
These three aspects of the variability /uncertainty dichotomy correspond to different uses of
~ assessments. These different uses could lead to treating different sets of parameters as variable
or uncertain. For example, when performing a sensitivity analysis to prioritize a sampling or
testing program, all parameters in the risk model that could be measured should be treated as
uncertain, and uncertainty should be distinguished from irreducible variability. In contrast, to
‘estimate a variable endpoint attribute, only those parameters that vary with respect to that
attribute should be treated as variable. For example, flow varies over time, but, if the end-
point variable is the number of species responding, it would not be included as a source of
variability, because it is the same for all species in a receiving stream.

5.1.4 COMBINED VARIABILITY AND UNCERTAINTY

The future is unpredictable because of the joint influence of variability and uncertainty. For
example, we cannot predict the minimum flows in a stream because of variability in meteor-
ology and hydrology and because of our uncertainty concerning the applicability of available
data to the future (e.g., the climate is changing and the watershed is being developed). This
combination has been termed total uncertainty.

The results of analyzing total uncertainty for an unreplicated event can be termed cred-
ibilities, following Russell (1948), to indicate that they are not probabilities in a conventional
sense. An example is weather reports that present the credibility of rain tomorrow, the
unreplicated event, based on uncertainty in measurements and models and the stochasticity
of the atmosphere. If we are interested only in the credibility of an outcome, we need not
distinguish variability and uncertainty. For example, if we wish to estimate the credibility that
a drought will extirpate a reintroduced population of fish in a stream in the next 50 years,
we might estimate and propagate all sources of variability and uncertainty together. For
Bayesians, this concept of credibility is simply a case of degree of belief (Section 5.3.2).

5.1.5 Error

Error can be introduced at any stage in the generation and analysis of data including
sampling, measurement, data transcription and analysis, model selection, and presentation
of results. Generally, assessors deal with error by attempting to minimize it (Chapter 9)
and hoping that it is inconsequential. Error, particularly measurement error, may, however,
be large enough to significantly contribute to unpredictability (Sarda and Burton 1995).
If measurement error is a particular concern or if it is important to estimate the true
variability underlying a data set, statistical techniques are available to estimate the error
and variability components of a data set (Zheng and Frey 2005). Alternatively, error may be
estimated independently by quality assurance audits or equivalent studies. For example, from
studies of interlaboratory variability in aquatic toxicity tests, error is generally in the range of
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3x to 5x (i.e., the highest result in a set of replicate tests is three to five times as great as the
lowest) but may be >10x depending on the test, toxicant, and set of laboratories (Johnson
et al. 2005). To the extent that we are aware of, and estimate, error, it is a component of
uncertainty.

The importance of error in science is illustrated by the experience of physicists, who often
find that data that differ from the null model by three to six standard deviations are illusory,
apparently because of errors that bias the results (Seife 2000). It seems likely that such
erroneous results are common in environmental studies, given the routine use of a two
sigma standard (95% confidence), the many opportunities for error, and the absence of
independent replication of environmental studies.

5.1.6 IoNORANCE AND CONFUSION

Ignorance and confusion make the results of an assessment uncertain in ways that the
assessors do not recognize. Ignorance is the source of unknown unknowns. That is, in some
cases one is uncertain about some aspect of the problem without knowing it, because of
ignorance that the issue even exists. For example, due to ignorance, some assessments of aquatic
risks from low dissolved oxygen (DO) have been based on measurements of daytime DO, which is
elevated by photosynthesis, rather than nighttime DO, which is depressed by respiration.
Confusion is the result of excess complexity of a problem. Often it results from attempts to
mentally model a problem that requires a formal conceptual, mathematical, or logical model.

5.1.7 SUMMARY OF SOURCES

We can categorize input or output parameters in terms of the types of unpredictability that
characterize them:

None—we know the answer and it is constant.

Variability—we know the answer but it varies.

Uncertainty—we are unsure of the answer.

Total uncertainty—we are unsure of the answer, but we know it varies.
Error, confusion, or ignorance—we do not know the answer at all.

5.2 WHAT IS PROBABILITY?

Since the founding of the probability theory in around 1660, it has been applied to multiple
concepts (Hacking 1975). It is best to think of probability as a unit that scales 0—1 and follows
certain logical rules. For example, if 4 and B are independent random events, the probability
of observing both 4 and B (the joint probability) is p(4 & B) = p(A4) x p(B). That relationship
holds no matter how the constituent probabilities are defined or derived.

Note that probability is not the only possible unit of risk. Alternatives include qualitative
scales such as acceptable/unacceptable or highly likely/likely/as likely as not /unlikely/highly
unlikely. They also include frequencies and relative frequencies, which are equivalent to some
probabilities, but more easily understood (Gigerenzer 2002). However, probability is the
standard unit of risk.

Like any unit, probability can be applied to diverse concepts and situations and can be
estimated in various ways. While there are other concepts of probability—Good (1983)
describes six—the most common are probabilities as expressions of frequencies and as
expressions of beliefs. Since probability is used as the measure of uncertainty in predictions,
the sources of probability correspond to the sources of unpredictability (Section 5.1). The
correspondence is, however, rough and imperfect.
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5.2.1 Types OF PROBABILITY: FREQUENCY vs. BELIEF

5.2.1.1 Frequency

Probability is intuitively understood as an expression of frequency. That is, we can summarize

- _the results of 100 coin flips as the frequency of heads (54 out of 100) and infer that the

probability of heads with this coin is 0.54. The frequency becomes a probability when it is
normalized as 0-1 and when it is assumed that the frequency is an estimate of an underlying
property, the probability of heads. This classical view of probability and statistics is easily
accepted, because it reflects the human propensity to extrapolate from experience (a series of
- coin flips) to a general rule (the probability of heads), which may be applied to individual
instances (the next coin flip). However, this approach runs into problems when we try to
apply this experience to other coins or other coin flippers. Experimental science can be
thought of as a means of making real-world variability analogous to flipping a coin. Experi-
mental design involves creating replicate systems and randomly assigning treatments to them,
so that the frequency of responses can be extrapolated to probabilities of response of such
systems in the real world. Problems occur when attempting to assign experimentally derived
~ probabilities to individual events in the complex and uncontrolled real world. However, even
without experimental replication, some probabilistic parameters are routinely derived from

. frequencies. Examples include frequencies of failures of treatment plants and of parameters

resulting from meteorology such as frequencies of wind direction or of low stream flows.
Probabilities are derived from frequencies, because of the associated variability in the system
that results in uncertain outcomes. If there were only one possible outcome, we would not

~ bother to express its probability as 1. To the extent that particular types of errors can be

identified and expressed as discrete variables, they can be used to estimate probabilities. If, for
- example, quality assurance audits provide the frequency of an error, that frequency can be used
~toestimate the probability that a value in a data set is erroneous. In that case, we are treating
_ variability in the data generation process as equivalent to variation in nature. Ignorance and
- confusion are effectively immune to the frequentist version of probability.

5.2.1.2 Belief

~ Clearly, probability is applied to situations in which a frequency is not its source. For
~ example, I might say that drought probably reduced the abundance of San Joaquin kit

~ foxes on the Elk Hills Petroleum Reserve in the 1980s, and I might even state that the
probability (or more properly the credibility) is 0.8. That is not a repeated event, so I am
_ expressing my degree of belief rather than appealing to a frequency. In addition, even when
~ We can appeal to frequencies our statements of probability may be better thought of as
 degrees of belief rather than as instances from a set of repeated observations. For example,
_ if we speak of the probability of an effect in a stream due to a proposed domestic wastewater
effluent, what frequency is relevant? If we require similar streams in the same region and very
similar effluents, we are unlikely to find enough cases to estimate a frequency. However, if we
~ accept all streams and domestic wastewater effluents, the relevance to our particular case is
- doubtful because of the range of stream and effluent flow rates, stream ecologies, effluent
- Fontents, technological reliability, etc. None of the frequencies provides exactly the probabil-

1ty that we want. This is a serious conceptual challenge for frequentist statisticians, but not for

~ Subjectivists who equate all probabilities with degrees of belief. However, it is a serious

~ bractical problem for assessment of risks for a single event, no matter what statistical
- framework is used.

: Beliefs should correspond to frequencies in the long term. If a risk assessor says.that the
lisk that a particular effluent will cause local extinction of brook trout is 0.7, that prediction
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cannot be verified, because the extinction will or will not occur. There is no condition of 70%
extinct. However, over a career, predicted effects should occur 70% of the time that a risk
estimate of 0.7 was derived. That verification occurs for weather reports. Over the millions of
weather predictions that have been made by the US National Weather Service, it rains on 70%
of days at locations for which a 70% chance of rain is forecast. However, that sort of
verification is not possible for ecological risk assessors, because there are too few predictions,
methods and circumstances of prediction are too diverse, and predictions of significant risk
result in management actions that negate the prediction.

Finally, subjectivists argue that even when observed frequencies are converted to probabil-
ities, the conversion is based on belief rather than logic. We have no reason for certainty that
the next ten coin tosses will be like the previous ones. However, that is the way to bet.

The concept that probabilities are expressions of belief is clearly more flexible than the
frequentist concept. That is, beliefs concerning variability, uncertainty, error, ignorance, and
confusion can all be expressed in units of probability.

5.2.2 Types OF PROBABILITY: CATEGORICAL V5. CONDITIONAL

Traditionally, statisticians have been concerned with estimating the probability of some event
ot hypothesis. An example is the probability of a fish kill below a treatment plant. This is a
categorical probability p(y). However, more commonly in recent years, the probability of
some event given a prior event, or of some hypothesis given data, is of concern. An example is
the probability of a fish kill given that a treatment plant has failed. This is a conditional
probability p(y|x). The basic formula of conditional probability is

plx) = plx & y)/p(x) (5.1

where p(x & y) is the joint probability of x and y.

This distinction may not be obvious. The reader may say that the first example is condi-
tioned on the existence of the treatment plant. However, if we treated that example as
conditional, it would refer to the probability of a kill in a stream reach, given the probability
that it has a treatment plant at its head. We would not be interested in that conditional
probability, because we defined the assessment problem and delineated the reach based on the
known existence of the plant. That is, x =1, so p(y|x) reduces to p(y). The second example is
more appropriately conditional, because we are interested in the probability of treatment
failure, which is not constrained, and its influence on the probability of a fish kill.

Conditional probability is associated with Bayesian statistics, because Bayes’ rule is a
formula for estimating probabilities given prior beliefs and evidence. However, Bayesian
statistics also involve concepts of subjectivism and updating that are not inherent in the
concepts and calculus of conditional probabilities (Section 5.3.2).

5.3 WAYS TO ANALYZE PROBABILITIES

Some probabilities are simply calculated from the logical rules of probability. For example, if

the probability that an out-migrating salmon will be killed by hydroelectric dams is 0.2 and by
irrigation withdrawals is 0.08, the probability of being killed by these anthropogenic hazards
is (0.2 + 0.08) — (0.2 x 0.08) —0.26, i.e., the probability of being killed by either minus the
probability of being killed by both, because a fish cannot be killed twice. It is equivalent to the
response addition model in mixtures toxicology (Section 8.1.2). More commonly, probabil-
ities are estimated using one of the various forms of statistics.

R A O
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5.3.1 FREQUENTIST STATISTICS

- The dominant school of statistics termed frequentist is concerned with estimating the frequency
of defined errors given an assumed model and an experimental or sampling design. This school
of statistics has been primarily concerned with testing statistical hypotheses. In this context,
“probability arises not to assign degrees of belief or confirmation to hypotheses but rather to
characterize the experimental testing process itself: to express how frequently it is capable of
discriminating between alternative hypotheses and how reliably it facilitates the detection
of error” (Mayo 2004). Hence, it tells us about the probability of errors in our procedure and
not, as many users believe, about the support for hypotheses provided by evidence. The latter is
supplied by “evidential relation logics (whether Bayesian, likelihoodist, hypothetico-deductive
or other)” (Mayo 2004). This aspect of frequentist statistics is the reason that your consulting
statistician wants to be involved in designing your experiments. The hypothesis test is using the
data to test the experimental design under the assumption that the null hypothesis is true.

- Frequentist statistics actually belong to two schools: Fisher’s testing of a null hypothesis
using p values and Neyman-Pearson statistics, which estimates relative error rates, usually for a
null hypothesis and an alternative. The standard approach to hypothesis testing in the natural
sciences is a hybrid, which is interpreted in a way that is not strictly correct but which seems to
work well enough for analysis of experiments (Gigerenzer et al. 1989; Hacking 2001; Salsburg
2001). In any case, statistical hypothesis testing is, in general, not appropriate to risk assessment

(Box 5.1). Frequentist statistics are also applied to more useful analyses such as confidence

intervals and statistical modeling techniques such as regression analysis (Section 5.5).

BOX 5.1
Hypothesis Testing Statistics

The statistical testing of null hypotheses is commonly perceived to be an objective and rigorous
approach to scientific inference. Such tests are frequently used to inform environmental manage-
ment, but these uses are nearly always inappropriate. Many publications have criticized the
ascendancy of statistical hypothesis testing in applied science (Parkhurst 1985, 1990; Laskowski
1995; Stewart-Oaten 1995; Suter 1996a; Johnson 1999; Germano 1999; Anderson et al. 2000;
Roosenburg 2000; Bailar 2005; Richter and Laster 2005), In fairness, it must be noted that some
environmental statisticians still defend statistical hypothesis testing (Underwood 2000). The
following are brief descriptions of a few of the problems with hypothesis testing.

We are not testing hypotheses: Hypothesis testing statistics were developed to test the reality of a
hypothesized phenomenon by attempting to refute the null hypothesis that the phenomenon does
not exist. “Most formal inference is not hypothesis testing but model construction, selection and
checking (formal and informal), estimation of parameters and standard errors, or calculation of
confidence regions or of Bayesian posterior distributions of parameters” (Stewart-Oaten 1995).
This is particularly true in ecological risk assessment. We are not interested in testing the
hypothesis that a chemical has no toxicity; we want to know what its effects will be at given levels
of exposure. Similarly, we are not interested in testing the null hypothesis that two streams are
identical; we know they are not. We want to know how they differ. Even when researching
scientific hypotheses, it is better to compare genuine alternative hypotheses than to test a null
hypothesis that nobody believes (Anderson et al. 2000; Taper and Lele 2004).

We are not interested in statistical significance: We are all taught, but often forget in practice,
that statistical significance has no particular relationship to biological significance or societal
significance. Real-world decisions should be based on real-world significance.

Continued
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BOX 5.1 (Continued)
Hypothesis Testing Statistics

Statistical significance is subject to manipulation: If a responsible party wishes to avoid statistically
significant effects in a test or field study, they can use few replicates, perform many compatisons, and
use imprecise techniques so that the null will not be rejected. On the other hand, if environmentalists
wish to find an effect, any difference can be statistically significant if the investigators are careful to
keep method errors small and are willing to take enough samples. This is a result of the fact that
statistical significance is about statistical designs, particularly the number of “replicates.”

The relative degree of protection is biased by the statistics: If statistical significance is the criterion,
more precisely quantified, more readily sampled, and more easily replicated life stages, species, and
communities are more protected. For example, in biological surveys, a given proportional loss of
species is more likely to be statistically significant in invertebrates than in fish, so biocriteria are less
protective of fish (Suter 1996c). Some important ecological effects may never be detectible with
statistical significance in practical or ethically acceptable studies (Roosenburg 2000).

Statistical hypothesis tests with field data are nearly always pseudoreplicated: The multiple samples
of contaminated media and biota that are taken from an exposed environment and used as replicates
in hypothesis tests are in fact pseudoreplicates (Hurlbert 1984). The message that environmental
pseudoreplicates should not be treated as replicates has been widely heard but has not been appre-
ciated. Few risk assessors would accept the results of a toxicity test in which one rat was treated witha
chemical and another was not, even if replicate samples of blood from one rat had a “significantly”
different hematocrit from the other. The reason that the test would not be accepted is that while the
measurements were replicated the treatment was not. There are any number of reasons why the
hematocrit of one animal might be lower than another’s, which has nothing to do with the treatment.
In studies of contaminated sites, the site is the “rat” and the waste, effluent, or spill is the unreplicated
treatment. Ecological risk assessors should be at least as leery of testing hypotheses about differences
between differently treated sites as they are about differently treated animals. There are more reasons
why two ecosystems might differ than why two rats might differ. Note that pseudoreplication affects
all estimates of variance, not just those in hypothesis tests. However, the issue is much more important
for hypothesis tests because the variance is used to decide whether a treatment has an effect.

Statistical hypothesis tests with field data almost never randomly assign treatments: Even if we have
true replication (e.g., by comparing sets of replicate streams with and without sewage treatment plants),
field studies almost never randomly assign receptors to treatments. That is, we do not have a set of 20
streams and randomly pick 10 to have a sewage treatment plant each and 10 to have none. In fact,
streams receiving treated sewage were picked by engineers and planners for nonrandom reasons and are
likely to differ in ways that nullify any hypothesis test to determine the significance of differences.

Hypothesis tests invite misinterpretation: Even when testing a scientific hypothesis with an appro-
priate experimental design, the statistics are often misinterpreted. A common mistake is to accept a
null hypothesis when one fails to reject it (Parkhurst 1985; Anderson et al. 2000). Null hypothesis tests
assume that the null is correct and determine the probability of data at least as deviant from the null as
the data obtained, given that assumption. Clearly a test cannot address its basic assumption. For
example, in developing a model of the aquatic toxicity of polycyclic aromatic hydrocarbons (PAHs),
it was assumed that the slopes of regressions of log LCsp vs. log Ko, are equal for all species (DiToro
et al. 2000). The investigators tested the null hypothesis of equal slope for 33 species and, after
correcting for multiple comparisons, accepted the null hypothesis and concluded that the slopes are
all equal to a universal slope of -0.97. (The correction for n = 33 makes it very difficult to achieve a
significant difference, but that is a less fundamental problem.) The conclusion that the slopes are
effectively equal is defensible, but is not justified by the hypothesis test. To provide evidence for
equality of slopes within a hypothesis testing approach, the investigators should have determined the
deviation & from the universal slope that would be biologically significant and then designed a study
to determine whether that difference occurs. Those who recognize that they should not accept their
null based on failure to reject are often tempted to perform a post hoc analysis of the power of the test.
Such retrospective power analyses are, however, technically indefensible (Goodman and Berlin 1994;
Gerard et al. 1998; Shaver 1999).
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5.3.2 BAYESIAN STATISTICS

Although modern Bayesian statistical practices, like frequentist statistics, are concerned with
making inductive inferences, Bayes himself was concerned with a problem in deductive
inference. Classical deduction is represented by syllogisms such as 4 is greater than B and
Bis greater than C, therefore 4 is greater than C. This logic is beyond dispute until we apply it
to the real world. Then we must admit that the magnitudes of 4, B, and C are estimated with
some degree of confidence. Hence, the inference is based on some prior degree of belief in the
relative magnitudes, and even deduction must be admitted to be as subject to bias and error as
induction. This position, that all inference is subject to uncertainty, is termed subjectivism.

Modern Bayesianism is characterized by three concepts, none of which is adopted by all
Bayesians.

Subjectivism: Bayesian statisticians argue that we know nothing about underlying distri-
butions, so we can say nothing about error rates in estimating true frequencies. All we know is
the defensibility of beliefs or of changes in beliefs given evidence. Although there are
personalistic Bayesians, subjective does not necessarily mean personal. Most Bayesians
believe that their analyses provide a rational basis for interpersonal subjective beliefs.

Updating: Bayesian statistics provide an appropriate way to go about modifying our beliefs
given new evidence. The presumption is that we have good reasons for believing what we
believe (i.e., we are rational and our reasoning to date has been coherent). Bayes’ theorem tells
us how to go about that updating (we multiply by the likelihood of the new evidence given the
hypothesis). Non-Bayesians respond that it often makes no sense in practice to update. For
example, if we have an empirical model of plant uptake of soil contaminants and we have new
data on plant uptake from the site that we are assessing, should we use the data directly or
should we use it to update estimates from the model? Most assessors would favor using
the data directly, because plant uptake is so dependent on site characteristics. As Dennis

~ (2004) wrote concerning the conditioning of data analyses on prior beliefs: “Why dilute the

Rothschild with Boone’s Farm?”* Bayesians can avoid this problem by using uninformative
priors, and some Bayesians insist on uninformative priors. However, a nominally uninforma-
tive prior such as a uniform distribution is still an assumption that influences a Bayesian
outcome. A more defensible but less common approach is to combine data from prior
instances of the phenomenon being estimated as the prior (e.g., waste tanks of the same
type or closely related species) (Myers et al. 2001; Goodman 2005).

Conditional probabilities: As discussed earlier, Bayesian statistics are associated with the
calculation of conditional probabilities. Those who use Bayesian analysis of conditional
probabilities, but do not subscribe to subjectivism, are called logical Bayesians. Bayes’ rule
appears in various versions of including versions for multiple conditions and for continuous
variables. The basic version of Bayes’ rule is the following formula:

p(B|A) = [p(A|B)p(B)]/p(A) (5.2)

where p(B|A) is the probability of B given A. B can be a parameter value, a state of a system
or anything else that has a probability, but often it is described as a hypothesis. Hence, the

formula may be recast as

p(hypothesis|evidence) = [p(evidence|hypothesis)p(hypothesis)]/p(evidence) (5.3)

Wwhere p(evidence|hypothesis) is the likelihood function and p(hypothesis) is the prior.

Bayesian analysis of conditional probabilities has become a favorite tool for addressing the
controversial question, does Pfiesteria piscidae cause fish kills (Stow 1999; Brownie et al. 2002;

: Newman and Evans 2002; Stow and Borsuk 2003). Newman and Evans’s (2002) version is

p(fish kill| Pfiesteria) = [p(Pfiesterialfish kill)p(fish kill)]/p(Pfiesteria) (5.4)
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As is so often the case with ecological assessments, problems come in parameterizing the
formula. In this case,

p(fish kill) is taken to be the daily rate of fish kills in the Neuse and Pamlico Rivers = 0.081.

p(Pfiesteria) is from the frequency of Pfiesteria in samples from east coast sites = 0.205.

p(Pfiesterialfish kill) is from the frequency of Pfiesteria-like organisms in water samples at
fish kills in the Neuse and Pamlico Rivers =0.52.

Hence, by Bayes’ rule,

p(fish kill| Pfiesteria) = 0.205 (5.5)

Note that in this analysis, the prior, p(fish kill), is not really a prior belief. It is simply the
number of fish kills divided by the number of observation days. A different answer would
have been obtained if the authors had used their actual prior beliefs concerning the probabil-
ity of a fish kill given an episode of Pfiesteria occurrence. Further, the use of a daily rate as the
prior does not provide the desired probability per episode. These comments are not intended
to discount the analysis, but rather to highlight the conceptual difficulties involved in just one
simple term of the formula. Other controversies are associated with the other two terms.

Bayesian statistics provide an alternative to frequentist statistics. Bayesian analogs of
mainstream frequentist techniques are available including Bayesian hypothesis testing, Baye-
sian confidence intervals, etc. Bayesians are common in academic statistics departments, and
their methods are increasingly being applied in industry and government agencies for a
variety of purposes (Box 5.2).

5.3.3 RESAMPLING STATISTICS

The availability of computers has made it possible to estimate probabilities by repeatedly
sampling from a data set or distribution, and analyzing the results of those samples. If one
wishes to estimate the distribution of a variable from a sample (e.g., the distribution of fish
weights from a sample of five fish), one might estimate a distribution by assuming a
distribution function (e.g., log normal) and using conventional frequentist statistics. How-
ever, one might doubt that we know the appropriate function and may doubt that five fish are

BOX 5.2
Bayesian Statistics and Sampling Design

Conventional approaches to sampling design begin with a pilot study that allows one to estimate
the distribution of the variable of interest. Then, if acceptable Type I and Type II error rates are
provided by the decision maker, an adequate number and distribution of samples can be esti-
mated. This approach is the basis for the quantitative portion of the US EPA Data Quality
Objectives process (Quality Assurance Management Staff 1994). In the author’s experience, this is
impractical, because decision makers will not admit to having acceptable error rates. This problem
is avoided with Bayesian analysis, because calculations are based only on the data obtained and
not on possible values given the statistical model. More importantly, Bayesian updating lends
itself to efficient sampling. One simply keeps collecting data until probabilities are adequately
defined or time or money run out. This approach has revolutionized clinical trials Berry et al.
2002. One keeps adding patients to the trial and updating the probability estimates until it is
sufficiently clear that the drug works, causes unacceptable side effects, or does neither. This

approach gets results more quickly and maximizes benefits to participants.
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enough to define it. Remarkably, we can generate an estimate of the underlying distribution
by repeatedly sampling from the set of five weights, with replacement, and then determining
_ the distribution of the mean, standard deviation, or other sample statistics from that set of
~ samples. This is the nonparametric Bootstrap method (Efron and Tibshirani 1993).
Resampling can also help us estimate probabilities from models. If we have a model with
~ multiple parameters that are defined by distributions, we may be able to solve the model

- analytically by variance propagation (Morgan and Henrion 1990). However, such analytical
solutions are often impractical because of nonlinearities and correlations among parameters.
The solution is to use Monte Carlo simulation, which involves repeatedly sampling from each
parameter distribution, solving the model, saving the results, and then reporting the distri-
bution of those results as the distribution of the modeled variable (Section 5.5.5).

5.3.4 OTHER APPROACHES

The number of ways of analyzing and expressing variability and uncertainty is large and
growing. In addition to frequentist, Bayesian, and resampling statistics, they include interval
arithmetic, fuzzy arithmetic, p bounds, fault-tree analysis, and possibility theory. The lack of
discussion of these techniques should not be taken to imply rejection of them. It reflects a
judgment that current conventional methods are appropriate and much more likely to be
accepted by reviewers and decision makers than exotic methods.

5.4 WHY USE PROBABILISTIC ANALYSES?

- The first step in a probabilistic analysis must be to determine motivation. The form and

content of the analysis depend on the desired output of the analysis. However, most guides to
~ uncertainty analysis assume a particular motivation and desired output and proceed from
that assumption. Reasons include the following.

5.4.1 DesIRE TO ENSURE SAFETY

Because of variability, a realized effect may be considerably larger than the most frequent
effect. Because of uncertainty, true effects may be larger than estimated effects or may occur
more frequently. Therefore, if the goal of an assessment is to ensure that all credible hazards
~ are eliminated or at least accounted for in the decision, variability and uncertainty must be
incorporated into the analysis. This may be done in at least four ways:

1. One may determine that the uncertainties are so large and poorly specified that no
quantitative uncertainty analysis is possible. In such a case, a risk management decision
may be made that all members of an allegedly hazardous class of chemicals or other
hazardous entities should simply be banned. This is known as the precautionary prin-
ciple. Once the risk management decision is framed in that way, the output of the risk
analysis is a conclusion that a chemical or technology belongs or does not belong to a
banned category.

2. One may make conservative assumptions. For example, in human health risk assess-
ments it is assumed that an individual drinks 2 L of water a day from a contaminated
source for a lifetime, consumes fish caught in contaminated waters, consumes vegetables
grown on contaminated soil irrigated with contaminated water, etc. Following this
example, ecological risk assessors may assume that an entire population of a wildlife
Species occupies the most contaminated portion of a site. By hypothesizing levels of
€xposure higher than are credible for any real human or wildlife population, these
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conservative assumptions ensure that exposure is not underestimated, even though the
exposure is uncertain. The product of stringing conservative assumptions together is a
“worst case” or “reasonable worst case” estimate of risk.

3. One may apply safety factors to the components or results of the assessment. These are
factors (usually 10, 100, or 1000) that are applied to ensure an adequate margin of safety
(Section 5.5.1). They are based on expert judgment and simple analyses of past cases.
The output of analysis using safety factors is a conservative risk estimate. However,
because of the way factors are derived and the way in which they combine multiple
sources of uncertainty, the degree of conservatism that results from safety factors is
unclear.

4. One may perform a formal quantitative uncertainty analysis and choose as an endpointa |
probability of effects that is very low. For example, one might declare that the prob-
ability must be less than 0.01 that the likelihood of extinction is as high as 0.0001 over

the next 50 years. i

5.4.2 Desire TO AvolD Excessive CONSERVATISM

As already discussed, the desire to ensure safety has led to the use of numerous conservative
assumptions and safety factors in risk assessments. Some risk assessors, regulated parties, and
stakeholders have objected that the resulting margins of safety are excessive (Kangas 1996).
One response has been to argue for reduction of number and magnitude of factors and
conservative assumptions or their elimination (i.e., use best estimates). An alternative is to
develop anticonservative factors to correct, at least in part, the compounding of conservatism
(Cogliano 1997). Another approach is to replace uncertainty factors and conservative
assumptions with estimated distributions of parameters and to replace the compounding of
factors with Monte Carlo simulation (Office of Environmental Policy and Assistance 1996). If
low percentiles of the distributions of risk estimates are used to ensure safety, this approach is
not necessarily less conservative than traditional regulatory approaches.

TR A R et

5.4.3 DEesIRE TO ACKNOWLEDGE AND PRESENT UNCERTAINTY

It is generally considered desirable to acknowledge and estimate the uncertainties associated
with assessments. It is both safer to admit your uncertainties and more ethical than ignoring
or hiding them. This is more the case with ecological risk assessments than with human health
risk assessments, because estimated ecological effects are often detectable, and therefore a
conservative deterministic estimate may be refuted by subsequent observations. A formal
probabilistic analysis provides a clear and defensible method for estimating variability
and uncertainty and justifying the estimates. However, many uncertainties are not estimated
by conventional uncertainty analysis, such as the uncertainty associated with model selection
or the uncertainty concerning assumptions about the future use of a site. Hence, presenta-
tions of uncertainty must include lists of issues, and qualitative judgments, as well as
quantitative estimates.

5.4.4 Neep 10 ESTIMATE A PROBABILISTIC ENDPOINT

Probably the least common reason for analysis of uncertainty in ecological risk assessment is
the specification of a probabilistic endpoint by the risk manager. Probabilistic endpoints have
been estimated by ecological risk assessors since the founding of the field (Barnthouse et al.
1982), but the impetus has come primarily from the assessors, not the risk managers.
A conspicuous exception is population viability analysis, which estimates probabilities of
extinction of species or populations given prescribed management practices (Marcot and
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Holthausen 1987). Such analyses should be done in the event that a proposed action may pose
a threat of extirpation. A more likely impetus for probabilistic endpoints are cases in which
the ecological risks are driven by the probability of occurrence of an extreme event. Examples
include the failure of a dam that holds a waste lagoon, an extremely wet period that brings
contaminated groundwater to the surface, or the entry of a large flock of horned larks into a
field recently treated with granular carbofuran. Finally, demands for probabilistic analysis
may come from reviewers or from responsible parties. In any case, ecological assessment
endpoints can be expressed as a probability, given variability or uncertainty in exposure or
effects.

5.4.5 PLANNING SAMPLING AND TESTING

Ideally, the field and laboratory investigations that provide the data for risk assessments
should be prioritized and planned on the basis of an analysis of uncertainty. The goal of the
quantitative data quality objectives (DQO) process is to gather enough data to reduce
uncertainty in the risk estimate to a prescribed, acceptable level (Chapter 9). This formalism
is not directly applicable to ecological risk assessment, but one can still allocate resources on
the basis of expected reduction in uncertainty. This use of uncertainty analysis requires a
separate analysis of uncertainty that can be reduced by feasible sampling, analysis, or testing,
rather than total uncertainty. For example, a model of mink and heron exposure to poly-
chlorinated biphenyls (PCBs) and mercury was used in the Clinch River assessment to
determine that the greatest source of reducible uncertainty in the exposure estimates was
the distribution of PCB concentrations in water and sediment (Maclntosh et al. 1994),
Analyses for this purpose are termed sensitivity analyses (Section 5.5.7).

5.4.6 COMPARING HYPOTHESES AND ASSOCIATED MoDELs

Although conventional hypothesis testing has little place in ecological risk assessment (Box
5.1), statistics are needed to choose among alternative models, based on different hypotheses
concerning the nature of the system, when mechanistic evidence is unclear. A simple common
case is the selection of an exposure-response function to model a set of test data from among
alternative functions that imply different characteristics of the response (linearity, thresholds,
hormesis, ete.). Other cases involve selecting from among more complex alternative hypoth-
eses such as compensatory, depensatory, and proportional responses of populations to
mortality (Chapter 27) or bottom-up vs, top—down control of ecosystems (Chapter 28).
Three approaches to model comparison are available:

1. One may choose the model that is best supported by the evidence. The most direct
approach is to use likelihood ratios to compare the relative likelihoods of hypotheses
given the available data (Royall 1997, 2004). This approach may be extended to include
the goal of model parsimony (i.e., Occam’s razor) by applying Akaike’s information
criterion. It is effectively the relative likelihood, normalized by the number of param-
eters in the model (Akaike 1973).

2. One may use knowledge of underlying mechanisms rather than the evidence provided by
a data set to choose among hypotheses. This approach is particularly appealing when, as
is often the case, data are not sufficient to confidently distinguish among models. For
example, it is generally impossible to detect depensatory processes in population-
monitoring data. However, one can estimate the influence of density-dependent preda-
tion and of difficulty in finding mates (the two mechanisms of depensatory responses)
given the abundance and selectivity of predators and the abundance of mates in the
ecosystem being assessed.
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3. One may apply all plausible models. One can then present the range of results to the risk
manager and stakeholders as an expression of model uncertainty (Section 5.1.2). Alter-
natively, one can combine them using Bayesian model averaging (Hoeting et al. 1999;
Wasserman 2000). This is conceptually appealing, if information concerning underlying
mechanisms is used to assign prior probabilities.

5.4.7 AIDING DECISION MAKING

Finally, the results of an uncertainty analysis may aid the risk manager in making a decision
concerning the remedial or regulatory action. Decision analysis and some other decision-
support tools require estimates of the probability of various outcomes, which must be derived
by a probabilistic analysis of risks (Chapter 34). More generally, the additional information
provided by an uncertainty analysis may lead to a better informed and more defensible
decision, even without quantitative decision analysis.

5.4.8 SumMARY OF REASONS

These reasons for evaluating variability and uncertainty are not mutually exclusive, so an
assessor may have multiple motives. However, the chosen analytical method must be able to
satisfy the most restrictive reason. For example, if one wishes to ensure safety, any analysis
will do; but, if one wishes to ensure safety and present a full disclosure of uncertainties in the
assessment, only a quantitative analysis will serve; and if one is using uncertainty analysis to
help plan a program of sampling, testing, and analysis, only a quantitative analysis that
distinguishes sources of uncertainty and variability will serve.

5.5 TECHNIQUES FOR ANALYSIS OF VARIABILITY AND UNCERTAINTY

This section presents six important classes of methods that are commonly used in ecological
risk assessment.

5.5.1 UNCERTAINTY FACTORS

The most common technique for incorporation of uncertainty is uncertainty factors (also
referred to as safety factors). These are numbers that are applied to either parameters of a risk
model or the output of a model to ensure that risks are not underestimated. Most factors are
based on expert judgment, informed by experience and simple analyses (Dourson and Stara
1983). For example, the NOAEL values used to calculate wildlife toxicity benchmarks are
divided by a factor of 10 if they are based on subchronic studies, because of uncertainties
concerning subchronic endpoints as estimators of chronic toxicity (EPA 1993e; Sample et al.
1996¢). This factor is based on expert judgment that the threshold for chronic toxicity is
unlikely to be more than a factor of 10 lower than a subchronic NOAEL. Most other
uncertainty factors are also multiples of 10, reflecting their imprecision.
In addition to the informality of their derivation, the chief complaint against uncertainty
factors is the way they propagate uncertainty through a model. If a model contains four
parameters, which are multiplied, and each has an associated uncertainty factor of 10, the
total uncertainty is a factor of 10,000. This implies that in the case being analyzed, all things
are simultaneously, individually as bad as they can credibly be. The uptake factor is much '
higher than has been observed, the organisms have extremely small foraging ranges, the
endpoint species is much more sensitive than the test species, etc. To avoid obtaining absurdly
extreme estimates when using this method of uncertainty analysis, one should estimate a




variability, Uncertainty, and Probability 5

‘maximum credible uncertainty (i.e., an overall uncertainty factor) in addition to factors for
the individual parameters.

 Uncertainty factors are operationally equivalent to the extrapolation factors discussed in
~ Chapter 26. The distinction is simply that extrapolation factors account for identified sys-
tematic differences between measures of effect and assessment endpoints, while uncertainty
 factors account for uncertainties when systematic differences are not identifiable. For
~ example, the subchronic tests discussed above are designed to be equivalent to chronic
- tests, so we do not expect them to be different, but we are uncertain of the truth of that
_ assumption in any particular case. Therefore, an uncertainty factor is employed. If we knew
 that there was a predictable difference between subchronic and chronic test results, we might
~ develop an extrapolation factor.

- 5.5.2 CONFIDENCE INTERVALS

. Confidence intervals and their bounds are the most generally useful statistics for expressing
~ variability or uncertainty. Although confidence intervals are often treated as equivalent to
 hypothesis tests, confidence and significance are distinct concepts within frequentist statistics
(Hacking 2001). Unlike significance tests, confidence intervals allow us to estimate properties
~ of the population from which a sample was drawn. Hence, their use reduces the sterility of
performing hypothesis tests and reporting significance or lack thereof. Much more useful
information is provided by presenting confidence intervals as interval estimates of a param-
_eter or as a “‘best” (mean, median, etc.) estimate and confidence intervals on that estimate or
‘on the data themselves. Confidence intervals on the data, given a model, are called prediction
intervals (see, e.g., Figure 26.3). Information is increased by presenting multiple confidence
_intervals. That is, rather than presenting only the conventional 95% confidence interval,
“which has no particular relevance to environmental management, the 50%, 75%, 90%, and
- 95% intervals are presented (Figure 5.1).
~ Frequentist confidence intervals are, strictly speaking, statements about confidence in a
method of sampling and its associated model (i.e., the method of estimating the interval is
correct 95% of the time), not about the data (i.e., you cannot say that the true value falls
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FIGURE 5.1 Sets of confidence intervals used to show how the uncertainty in a value (e.g., the ratio of
- SXposure concentration to toxic concentration) increases as the required level of confidence increases.
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in the interval with 95% confidence). To estimate confidence in sample-derived estimates
themselves, you need Bayesian confidence intervals.

5.5.3 Darta DISTRIBUTIONS

Uncertainty often appears in the form of a distribution of realized values of a parameter. For
example, concentrations of chemicals in repeated water samples or concentrations of chem-
icals at which individual organisms respond in a toxicity test have some distribution on the
scalar, chemical concentration. These distributions can be used to estimate uncertainties
concerning the mean water concentration during the period sampled, a future distribution
of water concentrations, the concentration that will result in a fish kill, etc. As will be
discussed, it is important to carefully consider the relationship between any data distribution
and the distributions to be estimated in the assessment. In general, distributions can serve two
functions. First, they can be used to represent the uncertainty or variability of a parameter in
a mathematical model of exposure or effects. Second, when exposure or effect metrics are
directly measured, the distribution of the measurements may directly represent the uncer-
tainty or variability of exposure or effects.

An important decision to be made is whether to fit a function to a data distribution and, if
so, which. Conventionally, one describes a distribution by fitting a mathematical function to
it, such as the normal, lognormal, uniform, or logistic. The result is referred to as a parametric
distribution function. However, if the distribution is not well fit by a parametric function or if
the purpose is to display the actual distribution of the data, an empirical distribution function
(EDF) may be used. In software for Monte Carlo analysis, EDFs are typically referred to as
custom functions. One limitation of EDFs is that they do not describe the distribution beyond
the data. This is a problem if the data set is not large and extreme values are of concern (e.g.,
estimating infrequent high exposure levels or responses of sensitive species). However, para-
metric functions may also poorly represent extreme values if they have infinite tails, if the
extremes of the data are not symmetrical (e.g., the resistant organisms are more highly
resistant than the sensifive organisms are sensitive), and if, as is typically the case, their fit
is influenced primarily by the bulk of data near the centroid. Issues related to choosing and
fitting functions are discussed in a book (Cullen and Frey 1999), a workshop report (Risk
Assessment Forum 1999), and in two special issues of the journal Risk Analysis (vol. 14, no. 5;
and vol. 19, no. 1).

Published distribution functions are available for some variables, either in prior risk
assessments or open literature publications. For example, distributions of great blue heron
exposure parameters are found in Henning et al. (1999), and such distributions may be
expected in the future for other species. The following strategies may be employed to develop
distribution functions:

o If the data set is large, one can employ statistical software packages to use statistical
criteria to select the best function. In general, the best model provides the highest
likelihood of the data, but other criteria such as least sum of squared deviations are
also used and all should give the same ranking with good data. However, if there are few
data points or the data are noisy, fitting algorithms may fail to give appropriate results.
In addition, one must be aware of the fact that models with more parameters fit data
better than those with fewer. Hence, one would not choose a three-parameter logistic
model over a two-parameter logistic model unless the fit was significantly better, or the
additional parameter had some mechanistic significance (e.g., to fit a variable maximum
value). Akaike’s information criterion, which is the log likelihood normalized by the
number of parameters, provides an appropriate basis for comparing functions with
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- different numbers of parameters fit to the same data set (Burnham and Anderson 1998)
~as it does for comparing mechanistic hypotheses (Section 5.4.6).
~+ One may choose a function to fit based on experience or on knowledge of the underlying
distribution from which the data are drawn. For example, one may know from experience
that stream flow rates are nearly always lognormally distributed when sufficient data are
available to confidently define the distribution for a site. Therefore, one would use that
function at a new site even though the data set is too small for its form to be clearly
defined.
* One may choose a function based on the processes that generate the distribution. The
addition of a large number of random variables results in a normal distribution due to
the central limit theorum. The multiplication of a large number of random variables
results in a lognormal distribution. Counts of independent random events result in
Poisson distributions. Time to failure or to death of organisms results in Weibull
distributions,
One may use parsimonious strategies, i.e., include in the distribution nothing beyond
what is known with confidence. If one feels that the shape of the distribution cannot
be specified but the bounds can, a uniform distribution may be defined. If only the
bounds and centroid can be estimated, they can be used to define a triangular
distribution.
Finally, if the form of the distribution is unclear or clearly does not conform to any
simple function (e.g., is polymodal), an empirical distribution may be used. Even if the
form is clear and conforms reasonably well to a function, empirical distributions may be
preferable because they reveal the actual form and variability of the data. The only
technical difficulty is the proper choice of bins to avoid excessive smoothing (too few
bins) or irregularity (too many bins with too few data per bin).

~ For mechanistic reasons (multiplicative variance) and because many environmental data
 setsare approximately lognormal in shape, the lognormal distribution is the most commonly
- used distribution in human health and ecological risk analysis (Koch 1966; Burmaster and
~ Hull 1997).
 The selection of a distribution should proceed by a logical process of determining what
~ functions are likely, based on knowledge of the type of data, the mechanism by which the
variance in the data was generated, and the goodness of fit statistics. The function should
not be selected by inappropriately applying hypothesis testing. It is common practice to
assume a function and then test the null hypothesis that the data have the assumed functional
form. However, this practice is inappropriate for two reasons. First, it is logically inappro-
~ priate to accept the null hypothesis when one has failed to reject it, although this is the most
common conclusion drawn from such analyses. Second, it is Inappropriate to apply a tool
developed to prove the occurrence of treatment effects, where there may be reason to favor
the null, to a problem in estimation, where there is not. Rather the assessor should choose the
best distribution based on prior knowledge and relative goodness of fit of those functions that
are logically plausible.

5.5.4  STATISTICAL MobpELiNG

Statistical modeling (also called empirical modeling) is the use of statistical techniques to
Benerate a predictive and potentially explanatory mathematical model of the relationship
between one or more independent variables and a dependent variable of interest. The most
obvious example in ecological risk assessment is the generation of exposure-response models
from test data (Chapter 23). Other examples include quantitative structure-activity relationships
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to estimate fate and effects parameters (Chapter 22 and Chapter 26), models to extrapolate
toxic responses between species, durations, etc. (Chapter 26), and stock-recruitment models
(Chapter 27).

Statistical modeling, in its simplest form, resembles the fitting of distribution functions to
data (Section 5.5.3). The function is the same, but in one case it is simply a description of the
data and in the other it is a model of the process that generated the data. For example, one
might interpret a log-normal function fit to the results of a fish toxicity test as simply the
distribution of a parameter, such as the proportion dying, with respect to concentrations of
the tested chemical. That is, the probability of death for fathead minnows has a log-normal
cumulative distribution function with the median expressed as the LCs,. However, the fitted
function is more usefully interpreted as a model of the responses of fish populations to the
chemical that may be used to estimate responses in other circumstances. Clearly, we are more
interested in toxicity test results as models. However, many other fitted functions are purely
descriptive such as the distribution of concentrations of a chemical in soil at a contaminated
site or the distribution of plant species richness in a forest.

These two interpretations have important implications for estimating uncertainty. The
error statistics for a fitted function are, by definition, appropriate estimates of uncertainty
concerning the function as a description of the data. However, those error statistics are not
adequate estimates of the uncertainty associated with using the same function as a model of
toxicity. In other words, departure of the data from the model is not an adequate estimate of
the deviation of reality from the model. The uncertainty in the toxicity model should,
depending on the use of the model, include interlaboratory variance, variance in water
characteristics, variance among fish populations, or other variables.

At the other extreme of model complexity, statistical modeling blends into mathematical
simulation modeling. That is, after variables have been independently estimated to the extent
possible, the remaining variables in a simulation model may be estimated by fitting the model to
data. This process is commonly termed model calibration. Increasingly, parameter estimation
for complex models is performed using Bayesian techniques (Calder et al. 2003; Clark 2005).

5.5.5 Monte CARLO ANALYSIS AND UNCERTAINTY PROPAGATION

When mathematical models are employed with multiple uncertain or variable parameters,
appropriate error propagation techniques are required. Many risk models are simple enough to
perform the propagation analytically (IAEA 1989; Morgan and Henrion 1990; Hammonds et al.
1994). However, the availability of powerful personal computers and user-friendly software
packages for Monte Carlo analysis has resulted in the displacement of analytical solutions by
that numerical technique. Monte Carlo analysis is a resampling technique that samples from the
distributions assigned to each model parameter, solves the model, saves the solution, and repeats

the process until a distribution of results is generated (Figure 5.2). Reviews and guidance for

Monte Carlo analysis can be found in EPA documents (Risk Assessment Forum 1996, 1997), in
relevant texts (Rubinstein 1981), and in a special issue of the journal Human and Ecological Risk
Assessment celebrating the 50th anniversary of the technique (Callahan 1996).

5.5.6  Nestep MonNTE CARLO ANALYSIS

As discussed above, situations involving risks can be thought of as involving both variability
and uncertainty. Both contribute to the estimation of the probability that a specified effect will
occur on a particular site, but in conceptually different ways. This distinction matters when
one is estimating a variable endpoint (e.g., the probability of extinction of a species given
variability in sensitivity among species) and wishes to estimate the associated uncertainties or
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FIGURE 5.2 A diagram depicting the process of Monte Carlo simulation.

when one is using models to plan a sampling and analysis program and needs to distinguish
reducible uncertainties. In such cases, the parameters of models should be divided into those
that are well-specified constants, those that are uncertain constants, those that are variable
but well-specified, and those that are variable and uncertain. The nested Monte Carlo analysis
(also called two-stage or two-dimensional Monte Carlo analysis) is begun by assigning

~ distributions to the inherent variability of the variable parameters (e.g., dilution flow in a

stream), uncertainty distributions to the uncertain parameters including the uncertain vari-
able parameters (e.g., the uncertainty concerning the true distribution of flow), and constants
to the well-specified parameters (e.g., molecular weight of the contaminant). Monte Carlo
analysis is performed by first sampling from the variability distributions and then sampling
from the uncertainty distributions for the uncertain variables and constants, and solving the
model. By iterating the sampling, one generates a distribution of the model output based on
variability and a distribution of the percentiles of that distribution based on uncertainty. An
example of output from such an analysis is presented in Figure 5.3. Examples of the use of
nested Monte Carlo analysis are presented in (Maclntosh et al. 1994; McKone 1994; Price
et al. 1996).

Although this nested analysis is computationally complex, the greater difficulty is the
conceptual problem of deciding how to classify the parameters. As discussed above, the
assessor must determine how variability and uncertainty relate to the goals of the assessment
and use that knowledge to consistently apply the analytical techniques. A nested analysis
increases the conceptual complexity, but it may increase the likelihood of performing the
analysis appropriately by compelling a more thorough review of the problem.’

Although the discrimination of variability and uncertainty is the most common use of
nested Monte Carlo analysis, any category of probabilities may be nested. For example, one
may be interested in separately analyzing variance among entities (organisms, populations, or
communities) and variance among temporal intervals (days or years) or events (spills, pesti-
cide applications, or species introductions). In particular, one might wish to distinguish

~ Variability among fields being treated with a pesticide from variability among applications

due to factors such as time to first rainfall,
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Observed Heron egg PCB concentrations vs. predicted
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FIGURE 5.3 Complementary inverse cumulative distribution functions for concentrations of polychlor-
inated biphenyls (PCBs) in great blue heron eggs. The dashed central curve represents the expected
variance among eggs from different nests (i.e., due to variance among females). The solid outer curves
represent the 5th and 95th percentiles on that distribution based on uncertainty in the parameters. The
dots connected by dashed lines are measured concentrations in heron eggs from two rookeries.
(Redrawn from MacIntosh, D.L., Suter, G.W., II, and Hoffman, F.O., Risk Analysis, 14, 405, 1994.
With permission.)

5.5.7  SENSITIVITY ANALYSIS

Sensitivity analysis estimates the relative contribution of parameters to the outcome of an
assessment. It may be performed a priori or a posteriori. A priori sensitivity analyses
determine the inherent sensitivity of the model structure to variation in the parameter values.
That is, if one knows the model structure but not the parameter values or their variance
structures, one can still determine the rate of change in the model output with respect to an
input parameter at any nominal value of the parameter by calculating the partial derivative.
More commonly, the individual parameter values are displaced by a prescribed small per-
centage from a nominal value, and the magnitude of change in the output is noted. The ratio
of the change in the output to the change in the input variable is termed sensitivity ratio or
elasticity. The model is more sensitive to parameters with higher sensitivity ratios (at least in
the vicinity of the assigned value). This technique is applicable even when no quantitative
uncertainty analysis is performed as a means of identifying influential parameters, and it has
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‘been recommended for determining which of the parameters should be treated probabilisti-
_ cally in the uncertainty analysis (Section 5.7). However, the sensitivity of the model to a
- parameter depends on the value assumed by the parameter (for models that are not fully
 linear) and its variance (for all models). Hence, the relative importance of parameters may
.~ differ from that predicted by an a priori sensitivity analysis (Gardner et al. 1981).

A posteriori sensitivity analyses determine the relative contribution of parameters to the
- model estimates. These analyses are typically done by performing a Monte Carlo analysis,
recording the pairs of input and output values for each parameter, and regressing the input

. parameter values against the model output values. Greater slopes indicate greater sensitivity,

- Various specific techniques have been employed including single, multiple, and stepwise

- multiple regression (Bartell et al. 1986; Brenkert et al. 1988; IAEA 1989; Morgan and Henrion
1990). This sort of sensitivity analysis incorporates the expected values of the parameters and
their assigned distributions due to variability or uncertainty. It can be used for communica-
tion of uncertainty in the risk estimates as well as to indicate which parameters of the model
may be important to address in future iterations of the assessment. Good discussions of
sensitivity analysis for risk models can be found in Iman and Helton (1988), Morgan and
Henrion (1990), and Rose et al. (1991).

5.5.8 LisTING AND QUALITATIVE EVALUATION

Many uncertainties are not quantified because they are judged to be relatively trivial, either as
a result of sensitivity analysis or based on judgment. In addition, some uncertainties are not
quantified because they cannot be quantified in any reasonable manner or because the
probabilities would not contribute to decision making. For example, uncertainty concerning
future land uses cannot be quantified with any reasonable confidence and is more usefully
treated as an assumption in the scenario than as a quantitative uncertainty in the risk models.
Some uncertain parameters are not quantified, because they are set by policy. Finally, some
uncertainties are not quantified because of limitations of time and resources. It is desirable to
address unquantified uncertainties for the sake of openness (Section 34.2).

5.6 PROBABILITY IN THE RISK ASSESSMENT PROCESS

Unfortunately, uncertainty analysis techniques are often applied without sufficient thought to
whether they make sense, given the goals of the assessment. In some cases, the results are
misrepresented; more often they are presented ambiguously. As in other aspects of the risk
assessment, it is appropriate to begin with a clearly defined assessment endpoint and deter-
mine the most appropriate way to estimate it (Chapter 16). For the analysis of uncertainty,
one should begin by determining which of the cases in Table 5.1 is applicable. That is, must
the assessment estimate a probability (e.g., probability of extinction) or a value (e.g., percent
reduction in species richness), and are uncertainties of those probabilities or values to be
quantitatively estimated (are they treated as determined or uncertain)? If probabilities derived
from either variability or uncertainty are to be estimated, distributions must be derived.
The next step is to define those distributions, and that requires answering two questions:

* What is distributed?
* With respect to what is it distributed?

These questions need to be answered as clearly as possible. Risk distributions may result from
variance or uncertainty in exposures, effects, or both.
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TABLE 5.1
Types of Endpoints for Risk Assessment Categorized in Terms of Their Acknowledged

Uncertainties

Endpoint
State of Knowledge Single Value Probability
Determined Specified value Probability from a specified distribution
Uncertain Probability of an Probability from a probability of an
uncertain value uncertain distribution

Source: From Suter, G.W., I, Guidance for Treatment of Variability and Uncertainty in Ecological Risk Assessment,
ES/ER /TM-228, Oak Ridge National Laboratory, Oak Ridge, TN, 1997,

5.6.1 DerNING ExPOSURE DISTRIBUTIONS

In ecological risk assessments, exposure distributions are distributions of exposure metrics
(¢.g., concentration or dose) with respect to space, time, organisms, or belief. The specific type
of space, time, or belief must be specified.

Space may be defined as arrays of points, linear units, or areas. Points are appropriate for
immobile or near-immobile organisms such as plants or benthic invertebrates if the endpoint
is defined in terms of individuals. For example, an assessor may be asked to determine
whether any plants are exposed to toxic soils or to estimate the proportion of plants exposed
to toxic soils. In those cases, one would estimate the distribution of point concentrations from
the distribution of sample concentrations (assuming an appropriate sampling design).
Streams are typically defined as linear units called reaches, and wildlife associated with streams
such as kingfishers have territories defined in linear units. For example, an assessment of belted
kingfishers would consider the distribution of exposures experienced in 0.4-2.2 km territories.
Most wildlife are exposed within areas defined as territories or foraging areas. Other areas of
exposure include distinct plant communities and distinct areas with a particular land use.

Time may be defined as a succession of instants, as intervals, or as incidents. Most samples
are instantaneous, and distributions of such instants in time may be appropriate when
temporal variance is purely random. However, few relevant exposures are instantaneous, so
such distributions are most often of use when one is interested in estimating an average
exposure over some period and its uncertainty. Most relevant exposures occur over some
interval. For example, one may be interested in determining whether a chemical will cause an
effect, which is known to require an exposure to relevant concentrations during a time x. One
would then be interested in the distribution of concentrations over time intervals with
duration x (i.e., moving averages). Another relevant interval is the seasonal exposure experi-
enced by migratory species or sensitive life stages. That is, one would estimate the distribution
of doses received during the seasonal interval when a life stage or species occupies the site.
Finally, one may be interested in incidents that result in exposure or elevated exposure, such
as storm events that flush contaminants into a stream or suspend contaminated sediments.
These might be expressed as the distribution of concentrations over incidents of some
specified duration or the joint distribution of concentration and duration of incidents.

Exposure may be distributed across individual organisms as in human health risk
assessments, either because the endpoint is risks to individuals of an endangered species or
other highly valued species, or because the endpoint is risks to populations expressed as
the proportion of individuals experiencing some effect. Exposures of individuals may be

e
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~ distributed due to variance in the areas they occupy, the food they consume, or inherent
properties such as weight or food preferences.

Distributions of the credibility of exposure arise when the distributions are defined in terms
~ of uncertainties or some mixture of uncertainties and variances. For example, a polyphagous
- and opportunistic species like mink may feed primarily on muskrats at one site, fish at
another, and a relatively even mixture of prey at a third, depending on prey availability.
Hence, the uncertainty concerning the mink diet at a site may be much greater than the
variance among individuals at the site, in which case the fractiles of the distribution of
individual dietary exposures are credibilities rather than proportions of individuals.

5.6.2 DEerNING EFrecTs DISTRIBUTIONS

In ecological risk assessments, effects distributions are distributions of responses of organ-
isms, populations, or communities (e.g., death, abundance, or species richness) with respect to
exposure. It is necessary to specify the interpretation of the effects metric and the sort of
exposure with respect to which it is distributed (see above). Four general cases will be
considered: effects thresholds, exposure-response relationships from toxicity tests, distribu-
tions of measures of effects, and outputs of effects simulation models.

Effects thresholds are often defined by thresholds for statistical significance such as NOAELSs
or LOAELs. These values do not have associated variances or other uncertainty metrics and are
conventionally treated as fixed values. However, while their inherent variance is unspecified, the
uncertainty associated with extrapolating them between taxa, life stages, durations, etc. can
be estimated (Chapter 26). The most common approach is uncertainty factors.

In conventional laboratory or field testing, organisms are exposed to a series of chemical
concentrations, doses, or some other exposure variable, and the number of organisms respond-
ing or the magnitude of responses at each exposure level is recorded. Models are fit to those
data that permit the calculation of either the exposure causing a certain level of the effect or the
level of effect at a given exposure (Chapter 23). If the response is dichotomous (e.g., dead or
alive) or dichotomized (e.g., the continuous variable weight can be converted to normal or
underweight), a frequency of response can be treated as a probability of effect in the endpoint
organisms (e.g., probability of dying). Alternatively, the frequency can be treated determinis-
tically as the proportion of an endpoint population experiencing the effect (e.g., proportion
dying). If one is concerned about the uncertainties associated with these results, one might
begin with the variance in the model estimate (e.g., confidence intervals) or the variance of the
observations around the model (e.g., prediction intervals). However, these variances are
generally smaller than the variance among tests, which is a more relevant measure of uncer-
tainty. The minimum variance among well-performed acute tests using the same protocol and
species results in test endpoint values within + a factor of 2 or 3 (McKim 1985; Gersich et al.
1986). However, ranges of results in less uniform test sets may be more than a factor of 10
(Section 5.1.5). In addition to this variance, which is inherent in the test, extrapolations
between test species, life stages, response parameters, etc. should be represented by subjective
uncertainty factors, empirically derived factors, or extrapolation models (Chapter 26).

Exposure-response relationships may also be derived from observational field data. That is,
the observations of co-occurring levels of a biological variable and one or more environmental
characteristics may be used to generate a model (Chapter 23). For example, the number of
insect taxa in streams might be related to the total suspended solids concentration. Although
these models are based on real-world data, they are not necessarily better representations of
causal relationships. Field data have high inherent variance due to biological, chemical, and
o physical variability among sites and over time, have high error due to lower quality of
measurements in the field, and, most importantly, are confounded due to correlations among
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the “independent” variables. In extreme cases, biological responses may be modeled as a
function of a measured variable, when the true cause is an unmeasured variable. For example,
episodic exposures to pesticides may be affecting streams in agricultural areas, but routine
water quality monitoring seldom includes pesticides and is unlikely to detect those episodes. As
a result, effects may be related to sediment rather than agricultural chemicals or to habitat
rather than lawn chemicals. Hence, study design is a larger source of uncertainty in field-derived
exposure-response models than the error and variance measures provided by statistics.

Finally, mathematical simulation models are used to estimate effects, particularly those on
ecosystem properties or on populations mediated by population or ecosystem processes
(Chapter 27 and Chapter 28). The uncertainties associated with these effects estimates are
usually generated using Monte Carlo analysis.

5.6.3 EsTIMATING Risk DISTRIBUTIONS

Risk is a function of exposure and effects. If only one of these components of risk is treated as
a distributed variate, the estimation of risk as a distributed variate is relatively straightfor-
ward. If the dose has been estimated to be distributed over organisms due to variance among
individuals, and the effects are assumed to have a determinate threshold, the output of the
risk characterization is the probability that an individual in the exposed population will
receive an effective dose (Figure 5.4). However, if the exposure and effects are both estimated
probabilistically, and the risk will be expressed as the joint probability, the concordance of the
distributions must be ensured. If both distributions are derived as degrees of belief, concord-
ance is not a problem; however, if they are based on variance, concordance should be assured.
If one is estimating the probability that organisms of a particular species are affected, both the
exposure and effects metrics must be distributed with respect to organisms. For example, if
effects are distributed based on the variance among organisms of a species observed in a
toxicity test, the variance in exposure should be limited to variation among organisms of
a species due to weight, diet, water consumption, etc. Even though ecological risks have been
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FIGURE 5.4 Inverse cumulative distribution function for exposure of rough-winged swallows to mer-
cury, derived by Monte Carlo simulation of an oral exposure model. The vertical lines are the no
observed adverse effect level (NOAEL) and the lowest observed adverse effect level (LOAEL). The
probability that an individual would receive a dose greater than the LOAEL is 0.6.
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FIGURE 5.5 Probability density functions for a predicted Salvelinus maximum acceptable toxicant
concentration (MATC) (solid line) and an expected environmental concentration (dashed line). (From
Barnthouse, L.W. and Suter, G.W., 11, User’s Manual for Ecological Risk Assessment, ORNL-6251, Oak
Ridge National Laboratory, Oak Ridge, TN, 1986. With permission.)

defined as the joint probability of an exposure distribution and an effects distribution since
the earliest published methods (Figure 5.5), little attention has been devoted to determining
and explaining what those probabilistic risks represent. Methods for addressing this issue are

discussed in Chapter 30.

5.7 PARAMETERS TO TREAT AS UNCERTAIN

If the number of parameters in a risk model is large, or if research is required to define
distributions, it is necessary to decide which parameters to treat probabilistically. The number
of parameters is likely to be large in the early stages of a risk assessment when few data are
available or in assessments that never perform much testing, measurement, sampling, or
analysis. For example, once contaminant concentrations in plants have been measured,
the plant uptake submodel of the wildlife exposure model can be eliminated. Hence,
a multiparameter model is replaced with a single measured parameter. If a probabilistic
analysis is performed that does not include all parameters, the following criteria should be

used in the selection:

« If a probabilistic analysis is replacing an analysis that included uncertainty factors or
conservative assumptions, the parameters to which those factors or assumptions were
applied should be treated as uncertain.

« If the regulators, responsible parties, or other stakeholders have expressed concern that
misspecification of a variable or uncertain parameter may affect the outcome of the
assessment, that parameter should be treated as variable or uncertain.

» If the probabilistic analysis is performed in support of a decision, the parameters relevant
to the decision must be treated as uncertain. For example, if the analysis is performed to
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aid development of a sampling and analysis plan, the parameters that may be measured
must be treated as uncertain.

* The EPA and others have specified that parameters determined to be influential by the
sensitivity analysis should be treated as uncertain (Hansen 1997; Risk Assessment Forum
1997). This requirement should be applied when other more relevant criteria are not
applicable. This requirement could cause the selection of parameters, such as the mo-
lecular weight of the chemical, that are not significantly uncertain or variable and are not
directly relevant to the decision.

5.8 SUMMARY

This chapter provides an overview of issues related to probability that should allow the reader
to understand the discussions and examples in the rest of the book. In particular, the reader
should understand that there is no uniform practice of probabilistic ecological risk assess-
ment. Rather, a variety of techniques may be applied depending on the goals of the risk
assessment, the audiences for the results, the available data and models, and other consider-
ations. These general issues will be revisited with respect to the development of the analysis
plan (Chapter 18) and the characterization of variability and uncertainty (Chapter 34).




