Tropical ecology WBNZ-849 starting 14:45 (as in USOS)

Ryszard Laskowski

Institute of Environmental Sciences, Jagiellonian University

http://www.cyfronet.krakow.pl/~uxlaskow/

1. About the course

2. Lecture #1: Introduction to tropical ecology

Course organization

Place: Institute of Environmental Sci., Room 1.1.1

Time: Friday, 14:45 – 17:15

- 8 x 3 h (lectures & discussion classes)
- 2 seminars (3 h each)
- Teachers: Marcin Czarnołęski, Wojciech Fiałkowski, Paweł Koteja, Ryszard Laskowski, Krzysztof Wiąckowski

Evaluation:

- final exam (5-6 open questions): 80%
- active participation in classes: 20%

Teachers' emails

- marcin.czarnoleski@uj.edu.pl
- wojciech.fialkowski@uj.edu.pl
- pawel.koteja@uj.edu.pl
- ryszard.laskowski@uj.edu.pl
- krzysztof.wiackowski@uj.edu.pl

Reading

Articles and textbooks available at the course website

< P

GEOGRAPHY OF EXTREME ENVIRONMENTS

THE TROPICS

CHARLES F. GRITZNER

 Books from the Library of Natural Sciences

4/62

Supplementary reading in Polish

ATTENTION:

The 'Tropical Ecology' course (WBNZ 849) is the prerequisite for 'Tropical Ecology Field Course' (WBNZ 850)

Topics:

Introduction to tropical ecology: tropical biomes – geographical distribution and characteristics

Destruction and protection of tropical ecosystems

Equatorial rainforests – the most diverse biome on Earth

- gradients in biodiversity and theories explaining them
- diversity in life strategies

Adaptations in animals to hot deserts

Biology of coral reefs and mangroves: environmental conditions and biodiversity.

Introduction to tropical ecology

Where are the tropics?

- Origin of the term: from Greek τρόπος (tropos) = turn (the sun appears to "turn back" at the solstices)
- Area between the Tropic of Cancer (23°30'N) and the Tropic of Capricorn (23°30'S)
- Area of the Earth where the Sun is 90° above the horizon at least once every year
- \rightarrow = tropical zone = torrid zone

Where are the tropics located? The simplest possible answer:

The area between the Tropic of Cancer and the Tropic of Capricorn

Why should we study tropical ecology?

Species richness on Earth (per 1 °×1 ° ≈ 9274 km²)

Grenyer, R. et al. 2006. Global distribution and conservation of rare and threatened vertebrates. Nature 444: 93-96. (pdf available for course participants at the course web page)

Species richness in tropics

Taxonomic group	Poland (312 000 km ²)	Uganda (241 000 km²)	
group	(312 000 KIII ⁻)	(241 000 KIII-)	
vascular plants	2700	4900	
mammals	109	330	
birds	446	1061	
reptiles	9	165	
amphibians	18	52	

Sources: Wikipedia; http://www.africapedia.com; EarthTrends (http://www.vub.ac.be/klimostoolkit/sites/default/files/documents/uganda_bd.pdf)

Biodiversity hotspots on Earth

"As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth."

Myers, N. et al. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853-858. (pdf available for course participants at the course web page)

Tropical climates according to Wladimir Köppen

Tropical climates according to Köppen

Group A: Tropical (megathermal) climates

- Af: Tropical rainforest climate

 (~ 5 10° of the equator; in coastal areas can extend to 25°; no seasonality) =
 hygromegathermal
- Am: Tropical monsoon climate (further from the equator; two seasons rain and dry)
- Aw: Tropical savanna climate (two seasons, wet and dry – very clear and pronounced)

Group B: Dry climates (arid and semiarid)

Only partly belong to tropics

1. Tropical rainforests

Climatic diagram for Belem (Brazil)

Tropical rainforests: geographical distribution around equator (ca. $10^{\circ}S - 10^{\circ}N$)

Tropical rainforests: characteristics

- Very high annual rainfall: at least 1700 2000 mm
- Average annual temperature: 27 30°C
- High rate of biogeochemical cycles
- Soils: low in organic matter and nutrients due to intensive weathering (laterization → oxisols)
- Four-layer forests: (1) emergent layer single trees above the canopy (60-70 m); (2) canopy layer (30-45 m);
 (3) understory layer (only ca. 5% of light!); (4) forest floor (only ca. 2% of light)
- Richness of epiphytes and lianas
- Extreme species richness: >30% of all plant and animal species living on Earth at only 6% of Earth surface!

Tropical rainforests: types

Lowland equatorial evergreen rainforests

- annual precipitation above 2000 mm
- Amazon, Orinoco and Congo basins, Indonesia, New Guinea
- Wet broadleaf forests partly evergreen
 - high annual rainfall, warm and wet summer and cooler and dryer winter
 - Central America, Caribbean, West Africa, India, Indochina

Montane cloud forests

- cooler mountain climate, high rainfall, low cloud cover
- tropical and subtropical mountains

Floodplain forests

- environmental conditions similar to lowland evergreen forests but in poorly drained areas → flooding
- Borneo, Sumatra, Malay Peninsula, Indochina

Nutrient turnover rate

Average retention time of dead organic matter and nutrients in forest litter: boreal forest (taiga), temperate broadleaf forest, and equatorial rainforest (*time in years*)

Biome	Organic matter	Ν	Р	K	Ca	Mg
Taiga	353	230	324	94	149	455
Temperate forest	4	5.5	5.8	1.3	3.0	3.4
Rainforest	0.4	2	1.6	0.7	1.5	1.1

Productivity and carbon accumulation

Average NPP of selected biomes (kg x m⁻² x year⁻¹), carbon accumulation rate (g x m⁻² x year⁻¹) and C(biomass)/C(soil)

Biome	Productivity	C accumulation rate	C(b)/C(s)
Taiga	0.8	11.7 – 15.3	0.55
Temperate forest	1.2	0.7 – 5.1	1.13
Rainforest	2.2	2.3 - 2.5	1.68

Lieth & Whittaker 1975, Schlesinger 1991

Main carbon pools in primeval tropical rainforests

Part of the ecosystem	Accumulated carbon (t C/ha)	
Alive plants (above and underground)	210	
Dead trees and litter	10	
Soil	100	
TOTAL:	320	

After Jonathan Adams, Oak Ridge National Laboratory, TN 37831, USA

Tropical rainforest soils

Global Soil Regions

22/62

Ferrasols (FAO) = Oxisols (USDA): location and pedogenesis

- Earlier called *laterites*; acc. to FAO *ferrasols*
- Definition: soils containing in the whole profile ≤10% leachable materials and <10% base saturation; high content of Fe and Al oxides
- Location: ca. 1/3 of the Earth's continental land area, mostly 15-25°S – 15-25° N

Pedogenesis – tropical weathering (*laterization*):

- high precipitation + CO₂ → chemical weathering and leaching of humic materials and minerals from the soil profile
- only stable Fe i Al oxides remain \rightarrow rusty-red color

Laterization

24/62

Ferrasols (Oxisols) – Kenya

Laterization – consequences:

- Leaching of virtually all organic matter and nutrients
 - \rightarrow soils very poor in nutrients
 - \rightarrow very small reservoirs of soil organic matter
 - plants have to use (re-cycle) all minerals released from decomposing litter very efficiently

→ no nutrient supply after forest destruction and removal of plants → soils become infertile very quickly → difficult forest regeneration

 primeval forests replaced with secondary ecosystems (secondary forests of bushes)

Four-layer forest structure

Emergent layer:

60-70 m high broadleaf trees

birds, monkeys, bats, butterflies

Canopy layer

30-45 m high, very dense layer

toucans, snakes, treefrogs, beetles

Understory layer

3-4 m high, little sunshine

treefrogs, beetles, leopards/jaguars

Forest floor

very dark \rightarrow few plants

anteaters, snakes, frogs, beetles

http://www.srl.caltech.edu/personnel/krubal/rainforest/Edit560s6/www/whlayers.html

Four-layer forest structure

Diversity of life forms: epiphytes and vines

Extreme species richness

Species richness of tropical rainforests

- At 10 ha of forest in Borneo up to 700 tree species → as many as in whole N. America!
- At 1 Peruvian tree 43 ant species → as many as in whole UK!
- Ca. 3000 fish species in the Amazon river more than in whole North Atlantic ocean!

Species numbers at 15 km² in Costa Rica:

mammals – 117 (*in whole Poland 105*); birds – 410 (435); reptiles – 86 (9); amphibians – 43 (18); moths – 4000 (1200); vascular plants – 1668 (2700)

Tropical rainforests: montane cloud forests (fog forest)

- Specific type of tropical rainforests:
 - area: tropical mountains
 - environmental conditions: persistent or frequent low-level cloud cover and fog → reduction of direct radiation and evapotranspiration, very high humidity
 - ecosystem characteristics: particularly rich in epiphytes (mosses, ferns, orchids, etc.)

Montane cloud forests

Africa

Venezuela

Ecuado

Ecuador

2. Tropical and subtropical seasonal dry broadleaf forests (monsoon forests)

Climatic diagram for Calcutta (India)

Monsoon forests: geographical distribution Two belts N and S from equatorial rainforests: ca. 10° – 20°N & 10° – 20°S

Calcutta, India

Monsoon forests: characteristics

- High average annual temperature
- High annual rainfall (~1000 2000 mm/year)
- Clearly pronounced, long (few months) dry season
 - most trees shed leaves in dry season;
 - plants accumulating water;
 - rich understory layer (plenty of sunlight in dry season)
 - three layers: (1) tree canopy; (2) understory; (3) forest floor
Main carbon pools in monsoon forests

Ecosystem part	Accumulated carbon (t C/ha)
Alive plants (above- and underground)	150
Dead trees and litter	10
Soil	100
TOTAL:	260

After Jonathan Adams, Oak Ridge National Laboratory, TN 37831, USA

Monsoon forest in dry season

Monsoon forest in Trinidad

Monsoon forests: characteristic tree species

Teak tree (Tectona sp.)

Ebony tree (*Diospyros sp.*) 39/62

Tropical grasslands

0

JAN

-20

Monthly Temperature and Precipitation 250 40 30 200 Precipitation (mm) 20 Temperature (°C) 150 10 100 0 50 -10

Climatic diagram for Nairobi (Kenya)

FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Month

Tropical grasslands in the world

Africa:

 Savannah, e.g. Serengeti, Masai Mara – high grasses with scattered acacia trees; large herbivores (40 ungulate species) and carnivores

South America:

- Llanos in Venezuela (Orinoco basin) flooded every year, with gallery forests
- Cerrado in Brazil grassland covered with forest of different density and gallery forests; high plant diversity

Australia:

 Savannah (Northern Australia) – grassland with scattered eucalyptus trees; herbivores – kangaroos and man-introduced ungulates

Savannah

- Average annual precipitation 1000-1500 mm (Köppen's Aw climate)
- Distinct, long dry season;
- Temperature: 20-30°C
- NPP: ca. 0.7 kg d.w. m⁻² year⁻¹
- Plants adaptations
 - to dry season: deep tap roots, thick bark, shedding leaves, storage organs (mostly underground)
 - to herbivores: solid sharp leaves, bitter taste, growing from beneath)

Savannah soils

Tropical grasslands

Savannah (Kenya) Llanos (Venezuela)

Cerrado (Brazil) Savannah (Australia)

Main carbon pools in tropical savannah

Ecosystem part	Accumulated carbon (t C/ha)
Alive plants (above- and underground)	35
Dead trees and litter	0
Soil	55
TOTAL:	90

After Jonathan Adams, Oak Ridge National Laboratory, TN 37831, USA

Main carbon pools in tropical grasslands besides savannah

Ecosystem part	Accumulated carbon (t C/ha)
Alive plants (above- and underground)	12
Dead trees and litter	0
Soil	42
TOTAL:	54

After Jonathan Adams, Oak Ridge National Laboratory, TN 37831, USA

Tropical deserts

Climatic diagram for Cairo (Egypt)

Desert soils – aridisols (USDA) (FAO: gypsisols, calcisols, solonchaks, solonetzes)

Desert soil profile: clearly seen calcareous layer

- Main process: CaCO₃ and MgCO₃ accumulation → development of calcareous layer
 - rain + atmospheric $CO_2 \rightarrow$ weak carbonic acid
 - dissolving Ca and Mg salts from surface minerals
 - transport to deeper soil layers
 - → evaporation → increasing concentration of dissolved minerals
 - \rightarrow solidification of salts from the solution
 - concentrations of salts toxic to plants and animals
 - water-impermeable carbonate layer

Main carbon pools in tropical deserts

Ecosystem part	Accumulated carbon (t C/ha)
Alive plants (above- and underground)	1
Dead plants and litter	0
Soil	0
TOTAL:	1

After Jonathan Adams, Oak Ridge National Laboratory, TN 37831, USA

Mountains change everything: zonation and characteristics of the vegetation of Mt. Kenya

Niemelä, T & Pellikka, P. 2004. Zonation and characteristics of the vegetation of Mt. Kenya (ISBN 952-10-2077-6)

Mountains change everything: Altitudinal vs latitudinal zonation

Aiba, S. 2016. Vegetation zonation and conifer dominance along latitudinal and altitudinal gradients in humid regions of the Western Pacific (In: Structure and Function of Mountain Ecosystems in Japan, ed. Gaku Kudo).

Mountains change everything: Altitudinal vs latitudinal zonation

Species richness decreases with altitude

Relationship between the number of species and altitude: bats in Manu Biosphere Reserves (Peru)

Ecofloristic zones in tropical mountains

- Alpine: ~3800 ~4500 m
 - high mountain steppe: Afro-alpine, paramo, puna
- Subalpine: ~3400 3800 m
 - few lianas and vascular epiphytes, rich moss and lichen flora; characteristic groups: Ericaceae, Brunelliaceae, Asteraceae...
 - 'elf forests' at ridges
- Montane: ~2400 3400 m
 - short trees, even fewer species; few lianas, still many epiphytes; can be seasonal
- Submontane: ~1000 2400 m
 - forest similar to that at lower elevation but with fewer species; trees ca. 25-30 m

Tropical mountain zones in the Andes: Venezuela, Pico Bolivar

ca. 4000 m

"*Tierra fria*" Paramo

ca. 3000 m

"*Tierra fria*" Upper montane forest

ca. 2000 m

"*Tierra templada*" Lower montane forest

55/62

Tropical mountain zones in Africa: Tanzania, Kilimanjaro

ca. 4000 m

Alpine

ca. 3000 m

Montane

ca. 2000 m

Submontane

Other tropical plant communities

Mangroves

areas: shallow, muddy sea coasts;

 <u>structure</u>: trees or shrubs, very few or even just one species; no understory and forest floor; few epiphytes and lianas

Gallery forests

- areas: along valleys with surface or underground streams
- <u>structure</u>: trees or bushes of different density; possible lianas, few epiphytes

Caribbean coast, Venezuela

Gallery forests

Gran Sabana, Venezuela

Gallery forests

Gran Sabana, Venezuela

Example topics for the seminar:

- 1) The newest data on the role of tropical rainforests in global carbon balance.
- 2) The highest tree species diversity in the world where and why?
- 3) Species diversity (of selected groups) on altitudinal gradient in the tropics.
- Is it possible to restore destroyed tropical rainforests? Área de Conservación Guanacaste – a case study in Costa Rica.
- 5) Tropical diseases: most important diseases, prevention & problems.

Important dates (on my website):

- 1. 18.10.2024 R. Laskowski lecture/discussion class: Course plan and rules; Introduction to tropical ecology: tropical biomes area, climate, soils and characteristics; latitudinal and altitudinal zonation
- 2. 25.10.2024 R. Laskowski lecture/discussion class: Anthropogenic destruction and protection of tropical ecosystems; REDD initiative
- 3. 08.11.2024 K. Wiąckowski lecture/discussion class: Tropical biodiversity: Latitudinal diversity gradient
- 4. 15.11.2024 K. Wiąckowski How can so many species coexist in a tropical rainforest?
- 5. 22.11.2024 W. Fiałkowski lecture/discussion class: Biology of coral reefs and mangroves: environmental conditions, biodiversity
- 6. 29.11.2024 P. Koteja lecture/discussion class: Adaptations to hot deserts: water balance, behavioural and physiological mechanisms for water conservation; behavioural and physiological thermoregulation, life histories
- 7. 06.12.2024 M. Czarnołęski lecture/discussion class: Biodiversity in tropics: diversity in life strategies
- 8. 13.12.2024 M. Czarnołęski lecture/discussion class: Tropical societies
- 9. 10.01.2025 All teachers seminar (groups 1, 2, 3); Due to the large number of students, there will be parallel seminar sessions.
- 10. 17.01.2025 All teachers seminar (groups 4, 5, 6)

Seminar topics to RL: deadline 16th December