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ABSTRACT 

 We present a general method for the numerical solution of stiff, ordinary, linear, 

homogeneous, differential equations by variable substitution. On the example of the radial 

impinging jet system, we also demonstrate the application of this method for calculating the 

colloid concentration profile and initial particle flux in the systems with uniformly accessible 

surfaces. We show that our method works well in systems with the energy barrier, resulting from 

the electrostatic, repulsive, particle-adsorption surface interaction, up to the order of hundreds of 

kT, when the adsorption flux vanishes. The numerical results obtained with our method are in 

good agreement with the known, limiting, analytical approximations for the particle flux through 

an energy barrier and for a low Peclet number. The developed numerical code is very stable in a 

wide range of the physical parameters, and its accuracy at the most challenging parameter sets is 

on the order of 10-4. To achieve this stability, we have derived and employed a single formula for 

the dispersion interaction, working at both a small and large separation distance. We show that 

this formula converges to the known analytical expressions in the limit of small and large 

separation distance. We also demonstrate that the maximum deviations between our formula and 

the other equations appear in the intermediate range of the separation distance and do not exceed 

10%. 

 

 Key words: colloid particle transport, convective-diffusion equation, Van der Waals 

interaction, modified empirical formula, DLVO theory, radial stagnation point flow system. 
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INTRODUCTION 

 Interactions between colloid particles in electrolyte solutions and boundary surfaces, 

often called collectors, determine the rate of important dynamic phenomena occurring in disperse 

systems, such as adsorption, deposition (irreversible adsorption), and adhesion. A quantitative 

description of these phenomena has implications for polymer and colloid science, biophysics, 

medicine, soil chemistry, as well as for many modern technologies involving various separation 

procedures, e.g. water and waste water filtration, membrane filtration, flotation, protein and cell 

separation, immobilization of enzymes, etc. Because of the large significance of the particle-

interface interactions, numerous attempts have been undertaken in the literature to quantify them, 

including the pioneering works of Derjaguin and Landau [1] and Verwey and Overbeek [2] 

known as the DLVO theory. The foundation of this theory was the postulate of additivity of the 

dispersion and electrostatic double-layer interactions. The latter were calculated as pair 

interactions in an infinite electrolyte reservoir using the Poisson equation with the ion density 

distribution characterized in terms of the Boltzmannian statistics. In this respect, the DLVO 

theory can be seen as one of many applications of the Gouy-Chapman-Stern [3-5] electric 

double-layer model. In spite of its simplicity, this model and the DLVO theory have been 

generally accepted in the scientific community as a reasonable approximation of real 

experimental systems at low concentrations of the electrolyte and colloid. 

 Once the particle-interface energy profile is known, the particle transport can be 

calculated if the hydrodynamics of the system is not very complicated. Specifically, the colloid 

concentration and the initial adsorption flux can be found by numerical integration of the 

continuity equation, also known as the convective-diffusion equation. For a simple geometry of 

the collector and barrierless adsorption, this equation can be solved using standard numerical 
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techniques. Under some simplifying assumption, the approximate analytical solutions are also 

possible [6-8]. This is not the case, however, if the energy profile has an energy barrier and a 

secondary minimum (SM). Because of the extremely rapidly changing surface forces in the thin 

boundary layer of the electrolyte, as well as because of the coupling of the particle transport 

through this thin electrolyte layer with the transport from the bulk, a numerical solution of the 

convective-diffusion equation becomes a difficult task, which requires the use of sophisticated 

numerical techniques. As a result, to the best of our knowledge, only limited results have been 

reported so far in the literature for the systems with an energy barrier and a secondary minimum. 

Therefore, the goal of this article is to develop a general method of numerical solution of the 

convective-diffusion equation even at a very high energy barrier. We will limit our 

considerations to the radial impinging jet (RIJ) system, also known as the radial stagnation point 

flow (RSPF) system. 

 

THEORY 

 Convective-Diffusion Equation. Let us consider a dilute suspension of spherical colloid 

particles in the vicinity of a solid/liquid interface. The particle transport in this system is 

governed by the continuity equation [6] 

bQ
t
n

=⋅∇+
∂
∂ j ,                            (1)  

where n is the particle concentration, t is the time, Qb is the source term describing, e.g., particle 

aggregation, and j the particle flux vector equal 
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nn UDj +∇⋅−= .                            (2) 

 The variables D and U, appearing in Eq. (2), represent the particle diffusion tensor and 

velocity vector, respectively. The latter can be expressed as 

TMFMUU rh ⋅+⋅+= ,                         (3) 

where Uh is the particle velocity due to the hydrodynamic forces alone, M and Mr, are the 

translational and rotational mobility matrices, respectively, F and T are the direct force and 

torque acting on the particle (external and specific). The set of Eqs. (1-3) constitutes the so-

called convective-diffusion equation, which can be used for modeling colloid particle adsorption 

at the interface. 

 Eq. (1) needs to be completed by boundary conditions. Far from the interface, the particle 

concentration n reaches its bulk value nb. At the interface surface, on the other hand, two 

different boundary conditions have been applied: the perfect sink (PS) boundary condition 

assuming an infinitely deep primary minimum (PM) of the particle-interface interaction energy 

at the collector surface; and the non-penetration boundary condition, where a finite depth 

primary energy minimum is assumed. The PS boundary condition, which can be expressed in the 

form of equation  at the PM, proved to be a reasonable approximation for calculating the 

initial adsorption flux in systems with strong particle-collector attraction forces [9], where 

adsorption can be considered irreversible. If the forces are not strong enough, however, or if one 

is interested in the kinetics of particle accumulation at the PM, then the second, more general 

boundary condition has to be applied. This boundary condition can be expressed in the form of 

0=n
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equation  at the PM, where  is the normal component of the particle flux vector. In this 

paper we will consider irreversible adsorption and the PS boundary condition only. 

0=nj

[ −n Uh

nj

]

 If no bulk reaction takes place in the system, the source term Qb vanishes, and after a 

very short transition period [9, 10], the initial adsorption flux can be calculated from the steady-

state convective-diffusion equation: 

( ) 0=⋅+∇⋅⋅∇ nFMD ,                       (4) 

where the rotational motion of the particles was neglected. 

 For a simple geometry of the collector and barrierless adsorption Eq. (4) can be solved 

numerically using standard numerical techniques. Under some simplifying assumptions, the 

analytical solutions are also possible. The detailed discussion of the analytical approximate 

solutions of the convective-diffusion equation can be found in Ref. [6-8]. In the case of the RIJ 

system, close to the stagnation point, where the interface is uniformly accessible to particle 

adsorption and the particle transfer to the interface does not depend on the radial coordinate, Eq. 

(4) becomes a one-dimensional, ordinary differential equation: 

( )3 HPeF ( ) ( ) 012
d
d

=++ HcH
H
jn ,                      (5) 

where the normal component of the dimensionless particle flux equals 

( ) ( ) ( ) ( )( ) ( )( )[ ( )
⎭
⎬
⎫

⎩
⎨
⎧ +−++−==

∞

HcFHFHHPeF
H
cHF

nD
aHj

Hj es
b

n
n

2
21 1

d
d ] ,        (6) 
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bnnc =  is the dimensionless particle concentration; ahH =  is the dimensionless particle-

interface gap-width or separation distance scaled vs. the particle radius a, where h is the 

separation distance; akTD πη6=∞  is the particle diffusion coefficient, where η is the dynamic 

fluid viscosity; Fs is the total force acting between the particle and adsorption surface, expressed 

in the kT/a units and calculated from the DLVO theory as the sum  

VdWedls FFF += ,                            (7) 

where Fedl and FVdW are the electric double layer and dispersion force contributions; Fe is the net 

gravity and buoyancy force given by the expression 

( gaF lpe ρρπ −= 3

3
4 ) ,                          (8) 

where ρp and ρl are the densities of the particle and solution, respectively, and g is the 

acceleration due to the gravity; and F1, F2, and F3 are the hydrodynamic correction functions for 

the spherical particle mobility next to a flat wall, which can be calculated from the approximate 

formulae given by Warszynski [11]: 

( )
42619

419
2

2

1 ++
+

=
HH
HHHF ,   ( )

( ) 167.12 828.0
79.11

H
HF

+
+= ,            (9) 
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( )
( )

( )⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥
+

−

<
−

=

137.0,
1

304.01

137.0,
ln256.0754.0

1

3

3

H
H

H
H

HF
   ; 

and Pe is the dimensionless Peclet number relating the rates of convection and diffusion, equal to 

( ) 2

3

,
c

m
ccr rD

aV
rhRePe

∞

= α ,                       (10) 

where rc and hc are the capillary radius and the distance between the capillary outlet and the 

adsorption surface, respectively, 2
cm rQV π=  is the mean linear velocity of the fluid, where Q is 

the volume flow, ηπρ cl rQRe =  is the Reynolds number relating the inertial and viscous forces; 

and αr is the flow parameter dependent on the flow intensity and cell geometry that can be 

obtained by the numerical solution of the Navier-Stokes equation [12, 13]. This dependence has 

been reported by Warszynski as a function of the Reynolds number for several values of the ratio 

cc rh  [11]. Based on the data published in Refs. [11, 12] the following fitting functions for the 

flow parameter can be found:  

( ) 2,
101735.0
8.00734.0

5.1

2

=
+

+
= ccr rh

Re
ReReα ,                (11) 

and 
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( ) 3,
1000572.0

28.00255.0
3.2

2

=
+

+
= ccr rh

Re
ReReα .               (12) 

 It should be noted that Eq. (7) holds for the boundary conditions: 

1at0 HHc ==     and   ,           (13) ∞→= Hc at1

representing the PS approximation, where H1 is the PM separation distance. In this model, we 

can calculate the value of the dimensionless initial adsorption flux, often referred to as the 

Sherwood number Sh, using the equation 

( 1HjSh n−= ) .                          (14) 

 We can rewrite Eq. (5) as 

( ) ( ) ( ) 0
d
d

d
d

012

2

=++ HcHg
H
cHg

H
c ,                   (15) 

where the functions g0 and g1 are equal 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++=

H
F

H
F

HF
FHF

HF
HF

HF
H
F

H
F

HF
HFHHPeHg ses

d
d

d
d2

d
d

d
d11 1

11

3
2

21

1

2
0 , 

( ) ( )( ) ( ) ( )( es FHF
H
F

HF
HHPeFHg +−++=

d
d11 1

1

2
21 ) .             (16) 
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 Technically, Eq. (15) is an ordinary, linear, homogeneous, differential equation of the 

second order that, because of Eqs. (13), represents a boundary value problem, which can only be 

solved numerically. Numerical integration of Eq. (15), however, can be challenging because of 

the coupling between the bulk transport (macroscale) and the transport through the thin boundary 

layer (microscale), where the rapidly changing, strong surface interactions have to be taken into 

account. This is especially the case when energy barrier and SM exist in the system, which can 

result in the variation of the particle concentration by many orders of magnitude over the 

separation distance on the order of 10-2. Differential equations of this kind, known as the stiff 

differential equations, require a special treatment. In what follows, we present a general method 

for the solution of the stiff, ordinary, linear, homogeneous, differential equations based on a 

variable substitution, which allows calculating the initial adsorption flux for several collector 

geometries. We will demonstrate the application of this method on the example of the RIJ 

system. 

 Variable Substitution. The key observation for the application of the variable 

substitution method is that both the particle concentration and separation distance are never 

negative. Therefore, instead of the variables c and H, we can use the variables 

( 11 ln HHx −= )     and    ( )cy ln1 = ,              (17) 

respectively. Then, 

( ) 11exp HxH += ,  ,   ( )1exp yc = ( )
1

1
11 d

dexp
d
d

x
yxy

H
c

−= ,  
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and ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−= 1

d
d

d
d

d
d

2exp
d
d

1

1

1

1
2
1

1
2

112

2

x
y

x
y

x
y

xy
H

c .              (18) 

 Using Eqs. (18) we can rewrite Eq. (15) as 

( ) ( ) ( )( ) ( 0
d
d

11111111
1

1 =+++ xcxbxfxf
x
f ) ,                  (19) 

where the functions f1, b1, and c1 are defined by the equations 

( ) ( )11

1
11 lnd

lnd
d
d

HH
c

x
yxf

−
== ,                      (20) 

( ) ( )( ) ( ) 1exp 11111 −= xxHgxb ,  and  .       (21) ( ) ( )( ) ( 11011 2exp xxHgxc = )

 The boundary conditions for Eq. (19) can be found from the series expansion of the 

concentration in the limit of : 1HH →

( ) ( ) ( ) ( 111
11

d
d

d
d HH

H
cHH

H
cHcHc

HH

−=−+≈ ) .               (22) 

Therefore, 

( ) ( ) ( ) 1
d
d

lnd
lnd 1

1
11 limlimlim

111

===
→→−∞→ H

c
Hc

H-H
H-H

cxf
HHHHx

.              (23) 
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 Moreover, we can deduce that 

( ) 111lim
1

−=
−∞→

xb
x

    and     ,           (24) ( ) 011lim
1

=
−∞→

xc
x

therefore, from Eq. (19) we get 

0
d
d

1

1lim
1

=
−∞→ x

f
x

.                           (25) 

 We can conclude that the logarithmic variable substitution transforms the stiff, linear, and 

homogeneous Eq. (15) into a nonstiff, non-linear, Riccati-type Eq. (19) that, because of the 

boundary conditions (23) and (25), represents a more tractable initial value problem. The 

numerical integration of Eq. (19) yields the function f1(x1), which in turn can be numerically 

integrated to give the logarithm of the colloid concentration as a function of the logarithm of the 

separation distance from the PM. 

 If the height of the energy barrier exceeds 102 kT, the calculated value of the particle flux 

through the barrier becomes negligibly small and we can assume a priori that the adsorption flux 

vanishes. One can still be interested, however, in calculating the concentration profile and 

particle flux for the separation distance , where H2 is the gap width corresponding to the 

barrier maximum. In this distance range, the concentration deviates relatively little from the 

equilibrium Boltzmann distribution 

2HH >

( ) ( )( )HEsHc −∝ exp , where  is the 

potential energy of the particle-interface interaction in the kT units and H΄ is a dummy 

integration variable. Therefore, it is reasonable to use the variable substitution: 

( ) ( )∫
∞

−=
H

ss HHFHE 'd'
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)    and    ( )( )sEcy expln2 = .           (26) ( 22 ln HHx −=

 Then, the following relationships hold: 

( ) 22exp HxH += ,       , ( )( )( )22exp xHEyc s−=

( )( )( ) ( )( ) ( ⎥
⎦

⎤
⎢
⎣

⎡
+−−= 22

2

2
222 exp

d
dexp

d
d xxHF

x
yxHExy

H
c

ss ) ,     and      (27) 

( )( )( )⎢
⎣

⎡
+−−= 2

2

2
2

2222

2

d
d

2exp
d
d

x
y

xHExy
H

c
s  

       ( )( ) ( ) ( )( ) ( )⎥
⎦

⎤
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+ 22

2
22

2

2

2

2 2exp
d
d

exp21
d
d

d
d

x
H
F

xHFxxHF
x
y

x
y s

ss . 

 Substituting Eqs. (27) to Eq. (15) we get 

( ) ( ) ( )( ) ( 0
d
d

22222222
2

2 =+++ xcxbxfxf
x
f ) ,                 (28) 

where the functions f2, b2, and c2 are defined by the equations: 

( ) ( )( )
( )22

2
22 lnd

explnd
d
d

HH
Ec

x
yxf s

−
== ,                     (29) 
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( ) ( )( ) ( )( )( ) 1exp2 222122 −+= xxHFxHgxb s ( ) ,                (30) 

and  ( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )222212022 2exp
d
d

x
H
F

xHFxHFxHgxHgxc s
ss ⎥⎦

⎤
⎢⎣
⎡ +++= . 

 The boundary conditions for Eq. (28) can be found from the assumption of vanishing of 

the particle flux through the energy barrier. Substituting Eqs. (27) to Eq. (6) and equating the 

latter to zero, we get, after simple rearrangements, that in the vicinity of the barrier maximum 

( ) ( )( ) ( )( )[ ( )2
2

222222 exp1exp xHxxHPeFFxf e ++−= ] .             (31) 

The value of the first derivative can be calculated from Eq. (28). 

 Eq. (28) is also a nonstiff Riccati-type differential equation that represents an initial value 

problem. Because of the substitution (26), the function f2(x2) changes even slower than f1(x1); 

therefore, we can easily integrate this equation to calculate the function f2(x2), and then the 

concentration profile and particle flux. 

 Limiting analytical solutions. Several limiting analytical expressions have been derived 

in the literature for the initial adsorption flux in the case of uniformly accessible surfaces. Prieve 

and Ruckenstein [14] considered the particle transport to a rotating disk and found the limiting 

expression for the initial flux of barrierless adsorption when the convection can be neglected. 

Following their analysis, we can derive the adsorption flux for the RIJ system in the limit of 

 [15] 0→Re
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( ) ( )( )
( )

1

11

d
exp

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∫

SFBLH

H

s
SFBL H

HF
HE

HcSh ,                  (32) 

where HSFBL is a separation distance corresponding to the edge of the surface force boundary 

layer, where both fluid convection and surface forces vanish, and where the normal component 

of the particle flux is constant. In our code we have chosen this distance in such a way that 

, which is of the order of the particle size. ( ) 310−−=SFBLs HE

 In the case of the particle transport through a high energy barrier the initial adsorption 

flux can be calculated from the expression [16] 

( ) ( )( ) ( 4221

21

exp
d
d

2
1

2

HcHEHF
H
F

Sh s
HH

s −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

=π
) ,              (33) 

where the separation distance H4 represents the boundary of the secondary well, where the 

surface potential vanishes. If the SM is shallow, this boundary is rather diffuse and can be a little 

hard to define unequivocally. In our code, we assumed that H4 is equal to the separation distance 

of the concentration minimum that appears usually at a distance larger than H3 (see the results 

presented in the next section). We have exploited Eqs. (32) and (33) for evaluating the validity of 

our code. 

 Electrostatic Interaction. The particle-plate electrostatic interaction can be modeled 

using different approximations reported in the literature. For a low surface potential and a thin 

electric double layer, one can use the limiting form of Hogg-Healy-Fuerstenau (HHF) formula 

when one of the particles’ radii tends to infinity [17]: 
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( ) ( )
( ) ( ) ([

⎭
⎬
⎫

⎩
⎨
⎧

−−++
−−
−+

= aH
aH
aH

kTk
aHE ipip

el
edl κψψ

κ
κψψε 2exp1ln

2
1

exp1
exp1ln

2
22 )] ,     (34) 

where Eedl is the particle-plate electrostatic interaction potential energy in the kT units, ε is the 

dielectric constant of the solution, ψp and ψi are the constant surface potentials of the particle and 

adsorption surface, respectively, kel is the electrostatic constant dependent on the unit system, 

equal to one in the CGS system and to ( ) 1
04 −πε

(

 in the SI system, where ε0 is the dielectric 

permittivity of vacuum, )kTINekk Ausel επκ 28=  is the inverse Debye length, where kus is the 

proportionality constant equal to 10-3 and 103 in the CGS and SI systems, respectively, e is the 

proton charge, I is the electrolyte ionic strength expressed in mol/dm3, and NA is Avogadro’s 

number. 

 The electrostatic force can be calculated from the formula: 

( )
( ) ( )

( ) ( )aHaH

aH

kTk
a

H
E

HF
ipip

el

edl
edl κκ

κψψψψεκ
−−

−+−
=−=

expexp

exp
2
1

d
d

22
2

,            (35) 

where the force is expressed in the kT/a units. 

 In real experiments, however, surface potentials can easily exceed 50 mV, and the 

parameter κa, representing the thickness of the electric double layer, can be smaller than ten. 

Under such conditions, the assumptions of HHF approach are violated and another 

approximation should be used. Therefore, as a primary method for modeling the electrostatic 

interaction in our code, we have exploited the linear superposition approximation (LSA) 

described in Ref. [18] with the effective surface potentials calculated according to the method 
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reported by Ohshima and collaborators [19]. In this approach, the particle-plate electrostatic 

interaction energy can be calculated with the limiting form of the equation for the particle-

particle interaction when one of the particles’ radii tends to infinity: 

( aHYY
ek
TkaHE ip2

el
edl κε −= exp)( ),                   (36) 

where Yp and Yi are the effective constant surface potentials of the particle and adsorption 

surface, respectively, given by equations 

( )

( )
( )4tgh

1
1211

4tgh8

2
2 p

p
p

a
a

Y
ψ

κ
κ

ψ

+
+

−+
=    and  ( )4tgh4 iiY ψ= ,         (37) 

where 
kT
e

pp ψψ =  and 
kT
e

ii ψψ =  are the dimensionless surface potentials. The electrostatic 

force between the particle and adsorption surface in the LSA method is equal to 

( ) ( aHYY
ek
Tka

H
E

HF ip2
el

edl
edl κεκ −=−= exp

d
d 2 ) .               (38) 

 Dispersion Interaction. A detailed review of the formulae used for calculating Van der 

Waals interaction can be found in Ref. [20] by Gregory. Because of the retardation effect, no 

single expression has been reported so far in the literature that would correctly represent the 

interaction at both short and long separation distances. Schenkel and Kitchener [21] found a 

simple empirical formula for two identical spheres, valid for a short distance H, by interpolation 

between the expressions for the retarded and unretarded interactions. A similar formula was 

quoted by Ho and Higuchi [22] for the case of two unequal spheres. The dispersion particle-plate 
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interaction at a short separation distance H can be expressed by the limiting form of this equation 

when one of the particles’ radii tends to infinity [20]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=− HaH
AHE

r

r
VdWs

16
)(

λ
λ ,                     (39) 

where A is the Hamaker constant; ar λλ =  is the characteristic wavelength of the dispersion 

interaction expressed in the particle radii, where the characteristic wavelength 100=λ nm; and 

a1 is a fitting parameter equal to 1.77, 11.116, and 14 in Schenkel-Kitchener, Ho-Higuchi, and 

Gregory equations, respectively. The dispersion force at a short particle-plate separation distance 

can be expressed as 

( )
( )2

1

1
2

2
6d

d
Ha

Ha
H

A
H

E
HF

r

rrVdWs
VdWs

+
+

−=−= −
− λ

λλ .                (40) 

 At a large particle-plate separation distance Czarnecki formula [23] offers a very good 

approximation of the Van der Waals interaction energy: 

( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+−−=− HpHpHpAHE rrr

VdWl 33

3

22

2

1 840
59.0

120
17.2

10
45.2

6 π
λ

π
λ

π
λ ,         (41) 

where the functions p1, p2, and p3 are equal: 

( )
( )221 2

31
H
H

H
HHp

+
+

+
−

= , ( )
( )332 2

42
H
H

H
HHp

+
+

+
−

= ,  and ( )
( )443 2

53
H
H

H
HHp

+
+

+
−

= . 

 The dispersion force at a long particle-plate separation distance can be expressed as 
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( ) ( ) ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
+−−=−= −

− HqHqHqA
H

E
HF rrrVdWl

VdWl 33

3

22

2

1 7
59.0

3
17.245.2

30d
d

π
λ

π
λ

π
λ ,     (42) 

where the functions q1, q2, and q3 are equal 

( )
( )331 2
18

HH
HHq
+

+
= ,  ( )

( )44

2

2 2
51062

HH
HHHq

+
++

= , ( )
( )55

32

3 2
5151882

HH
HHHHq

+
+++

= . 

 In principle, one could directly use Eqs. (40) and (42) to calculate Van der Waals force 

below and above the switching distance πλrsH ≈ , respectively. The discontinuity of the force 

and/or its derivatives at the point Hs could lead, however, to code instability. Therefore, it is 

better to modify Eq. (40) or (42) in such a way to get a single formula for the whole range of the 

separation distance. In what follows, we present such a modification for the empirical Eq. (40). 

 It is easy to notice that in the limit of a very large separation distance H, the functions 

 and the dispersion force calculated with Eq. (42) is determined by the 

leading term 

( ) ( ) ( )HqHqHq 321 >>>>

( ) 55

145.2
15
4

HH
AHF r

VdWl ∝−≈∞
− π

λ .                    (43) 

 On the other hand, Eq. (40) in this limit is determined by the term 

( ) 33
1

1
3 HHa
AHF r

VdWs ∝−≈∞
−

λ .                     (44) 
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 Eqs. (43) and (44) suggest that the origin of the inaccuracy of Eq. (40) in the limit of the 

large separation distance is a missing term of the order of H-5. In order to achieve a proper 

convergence of the dispersion force with the separation distance in this limit we can add a 

quadratic term into the denominator of the empirical Eq. (40): 

( )
( )22

21

1
2

2
6 HaHa

Ha
H

A
HF

r

rr
VdW

++

+
−=

λ

λλ
,                  (45) 

where a2 is a numerical constant. In the limit of ∞→H  this function converges to 

( ) 552
2

1 1
3 HHa

cAHF r
VdW ∝−=∞ λ ,                      (46) 

while in the limit of the short separation distance the additional quadratic term becomes 

insignificant and Eq. (45) reduces to Eq. (40). The coefficient a2 can be calculated from the 

comparison of Eqs. (43) and (46):  

96.1
1

2
a

a
π

= .                           (47) 

 The particle-plate dispersion energy can be derived from Eq. (45): 

( ) ( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
Δ

+−=−= ∫
∞

HIa
HX

Haaa
HHX

A
HHFHE r

H

VdWVdW 02
212 2

231
6

'd'
λ ,     (48) 

where , , and the integral I0(H) depends on the particle 

size: 

2
124 aa r −=Δ λ ( ) 2

21 HaHaHX r ++= λ
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           (49) 

 In our code, we calculated Van der Waals forces with Eq. (45), where the value of 

. The coefficient a2 calculated with Eq. (47) was equal 12.111 =a 22.42 ≈a . A comparison of 

the dispersion force calculated with the different formulae is presented in Fig. 1. Note that the 

results predicted with Eq. (45) are in a very good agreement with the Ho-Higuchi equation at a 

short separation distance, as well as with the Czarnecki equation at a long separation distance. 

 The relative difference between the dispersion force calculated with Eq. (45) and Eq. (40) 

or (42), can be quantitatively evaluated using the function 

( )
( ) ( ) ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

>

≤

=

HHH

HHH
H

lsl

lss

δδδ

δδδ
δ

,

,
  ,                (50) 

where ( ) ( ) ( ) 1−= − HFHFH VdWVdWiiδ ; i = s, l. The numerical results calculated with Eq. (50) 

for three particle sizes: , 500, and 5000 nm are presented in Fig. 2. As one can notice, the 

function δ(H) converges to zero in the limits of the short and long separation distances. Its 

maximum deviations appear in the range of the intermediate distance H and do not exceed 10%. 

50=a

 21



 

NUMERICAL PROTOCOLS 

 Integrating the convective-diffusion equation. Solution of the Riccati Eqs. (19) and 

(28) is not very demanding; therefore, in order to integrate it, one can use a variety of standard 

numerical procedures. In our code, we exploited the subroutine DDASSL [24] by L. Petzold, 

which is a part of the open source library SLATEC [25], available on the Internet. Two of the 

subroutine’s accuracy parameters, atol and rtol, were set up to 10-15 and 3*10-14, respectively. All 

the derivatives appearing in the program were calculated using the analytical formulae derived 

from the equations in the theoretical part of this paper. 

 We tested the code on personal computers in a wide range of the physical parameters and 

found it to be very stable. Numerical parameters, such as the number of grid nodes ng, as well as 

the lower and upper integration limits, can be a little dependent on the physical parameters of the 

modeled system and should be chosen empirically to achieve the best accuracy. Generally, 

however, we found that the optimal value of the lower integration limit was of the order of 

, which corresponded to the minimum separation distance ( ) 16ln 11 −≈ Hxmin ( ) 1
8101 HH min

−+≈ . 

The upper integration limit and the number of the grid nodes depend on the flow intensity. We 

found that for the Reynolds number , the upper integration limit should be on the order 

of , where , which corresponded to the maximum separation distance 

. Calculations conducted for this value of the Reynolds number, the parameter 

210−≈Re

12≈max
mx

510≈maxH

370=a

2,1=m

κ  and the energy difference ( ) ( ) 3632 ≈− HEs

10≥gn

HEs kT, where H3 is the SM distance, 

suggested that for such integration limits and for , the relative variation of the 

adsorption flux with the growing nodes’ number was in the range of 10-4, which we consider 

3
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high accuracy. The accuracy increases rapidly with the Reynolds number, the thickness of the 

electric double layer, and with the decrease of the energy barrier.  

 Calculating the colloid concentration profile, particle flux, and surface 

concentration of the particles trapped in the secondary minimum. Once the integrand of Eq. 

(19) or (28) had been determined, we calculated the logarithm of the colloid concentration by 

integration of the interpolating quadratic polynomials that were obtained for subsequent triplets 

of the grid nodes. The coefficients of the interpolating polynomials were calculated using the 

procedure DGEFS [26] by E.A. Voorhees, which is available in the library SLATEC [25]. Then, 

the separation distance, concentration, and its first derivative were calculated at the grid points 

using Eqs. (18) or (27). Finally, we calculated the normal component of the particle flux with Eq. 

(6). 

 The dimensionless surface concentration of the particles trapped in the SM can be 

calculated by integrating the particle concentration around the SM: 

( )∫=
4

2

d3
H

H
b HHcnaπθ .                        (51) 

 In order to calculate the integral appearing in Eq. (51) we used the linear interpolation of 

the concentration between the grid nodes. For localizing the energy barrier and SM, we used 

Ridders’ method described in Refs. [27, 28]. 

 

RESULTS AND DISCUSSION 

 In this section we present the numerical results obtained for three different systems: 

without an energy barrier, with a barrier of the height of ( ) 202 =HEs kT and with a SM of the 
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depth of kT, as well as for a system with a high energy barrier of the order of 

kT. To demonstrate the computational abilities of the code, in all the systems we 

chose a low Reynolds number  and a large parameter 

( ) 163 −≈HEs

100( )2 =HEs

01.0=Re 370≈aκ . In all the systems, the 

particle radius was equal nm, ionic strength 500=a 05.0=I M, adsorption surface potential 

20=iψ mV, Hamaker constant J, PM distance 2010−=A 1.01 =H nm, temperature 295=T K, 

particle density 055.1=pρ g/cm3, viscosity 935.0=η cP, and the ratio 2=cc rh . The only 

physical parameter different in all the three systems was the particle surface potential, equal 

65.19−=pψ , 19.65, and 28.80 mV, respectively. 

 Figure 3 presents the particle-interface interaction energy, colloid concentration, and 

particle flux as a function of the separation distance, calculated for the system with no energy 

barrier. The concentration profile monotonically decreases with the separation distance. The 

vertical line segment at the lowest distance corresponds to the linear regime of the integrand 

, where Eq. (22) holds. The particle flux is constant for the separation distance ( ) 111 ≈xf 10<H , 

which results from the low flow intensity and confirms the validity of the approximate Eq. (32). 

Indeed, numerically and analytically calculated values of the adsorption flux, equal respectively 

 and , are different by just 3%. 410* − Sh795.3=Sh 410*919 −.3=

 Figure 4 presents more interesting results obtained for the system with the energy barrier 

of the height of 20 kT. The particle flux to the PM and SM is constant. The latter is just a result 

of the negligible convection. The former is a consequence of a very small distance between the 

energy barrier and the PM, as well as the fact that the barrier is very thin. Therefore, the radial 

component of the particle flux at the energy barrier is negligibly small, and the normal 

component of the particle flux through the barrier is constant even for vigorous flows. The 
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numerically calculated adsorption flux is , which is consistent with the 

approximate analytical result  calculated with Eq. (33). Note that the 

concentration changes rapidly in the range of 20 orders of magnitude over the distance of the 

order of 10-1, which makes the direct integration of Eq. (15) very hard. The concentration profile 

has a high maximum corresponding to the energy SM. The particle surface concentration at this 

minimum, calculated with Eq. (51), is . 

1110*368.4 −=Sh

1110−

210*64 −

*055.5=Sh

.4=θ

 A comparison of the integrands f1(x1) for the two systems is presented in Fig. 5. The 

function is very smooth for the system without an energy barrier. The presence of the energy 

barrier results in more rapid changes of the function at the value of the argument corresponding 

to the distance of the energy barrier and SM. Even in this system, however, the function changes 

relatively slowly and can be integrated using the standard numerical techniques. 

 In Fig. 6 we present the energy profile, colloid concentration, and particle flux calculated 

for the third system with a very high energy barrier about 102 kT, where the adsorption flux 

vanishes. The results were obtained using the two different variable substitutions defined by Eqs. 

(17) and (26). As one can notice, the results are essentially identical. Again, the particle flux to 

the SM is constant at the distance 10<H , and a particle accumulation takes place at the SM. 

The particle surface concentration at this minimum, calculated with Eq. (51), is . 

This lower value, as compared to the system with the lower energy barrier, results from the 

shallower SM. 

410*56.9 −=θ

 The integrands themselves have been compared in Fig. 7. The function f2(x2) varies very 

little, which confirms the Boltzmann distribution of the colloid concentration at the interface. 

The variations of the function f1(x1) are much larger but still small enough to allow integration of 

Eq. (28) with the standard numerical techniques.  
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CONCLUSIONS 

 In this article, we have developed a general method of numerical solution of stiff, 

ordinary, linear, homogeneous, differential equations by variable substitution. On the example of 

the RIJ system, we have also demonstrated the application of this method for calculating the 

colloid concentration profile and initial particle flux in the systems with uniformly accessible 

surfaces. We have shown that our method works well in systems with the energy barrier up to the 

order of hundreds of kT, when the adsorption flux vanishes. The numerical results obtained with 

our method are in good agreement with the known, limiting, analytical approximations. The 

developed numerical code has been very stable in a wide range of the physical parameters, and 

its accuracy at the most challenging parameter sets is of the order of 10-4. To achieve this 

stability, we have derived and employed a single formula for the dispersion interaction, working 

in the whole separation distance range ( )∞∈ ;0H . We have shown that this formula converges to 

the known analytical expressions in the limit of the small and large separation distance. We have 

also demonstrated that the maximum deviations between our formula and the other equations 

appear in the intermediate range of the separation distance and do not exceed 10%. 

 

SUPLEMENTARY MATERIAL 

 The numerical source code in Fortran, which we have developed and used in our 

calculations is available upon request from P.W. 
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FIGURE CAPTIONS 

Fig. 1. Comparison of the absolute value of the particle-plate dispersion force calculated with 
three different formulae: Ho-Higuchi, Eq. (40) with 12.111 =a

500

 (dotted line with circles); 
Czarnecki, Eq. (42) (dotted line with triangles); and Eq. (45) (solid line). The interaction force 
was calculated for a polystyrene particle of the size =a nm at a mica plate and for the 
Hamaker constant kT. Note that the results predicted with Eq. (43) are in a very good 
agreement with the Ho-Higuchi equation at short separation distance, as well as with the 
Czarnecki equation at long separation distance. 

4.2=A

 
Fig. 2. Relative difference between the dispersion forces calculated with Eq. (45) and Eq. (40) or 
(42). Dotted, dashed, and solid lines represent results obtained with Eq. (50) for three particle 
sizes: , 500, and 5000 nm, respectively. Note a very good agreement in the limits of the 
short and long separation distances. The maximum deviations of the difference δ appear in the 
range of the intermediate distance H and do not exceed 10%. 

50=a

 
Fig. 3. Particle-interface interaction energy (dotted line), colloid concentration (solid line) and 
normal component of particle flux (dashed line) as a function of separation distance. At the low 
Reynolds number, the particle flux is constant over a wide range of the separation distance, in 
agreement with the assumptions accepted for the derivation of Eq. (32). 
 
Fig. 4. Particle-interface interaction energy (dotted line), colloid concentration (solid line) and 
normal component of particle flux (dashed line) as a function of separation distance in the 
system with the energy barrier of the height of 20 kT. The particle flux to the PM and SM is 
constant because of the negligible convection and small separation distance between the barrier 
and the adsorption surface. Note a strong particle accumulation at the SM. 
 
Fig. 5. Comparison of integrand f1(x1) calculated for two systems: with and without energy 
barrier. The results are depicted by dashed and solid lines, respectively. The function is very 
smooth in the case of the barrierless deposition and changes more rapidly when the barrier is 
present. The changes are still relatively slow, and the function can be numerically integrated 
using the standard techniques. 
 
Fig. 6. Comparison of colloid concentration (solid line) and normal component of particle flux 
(dashed line) calculated with different variable substitutions. Lines and open circles represent the 
results obtained with Eqs. (17) and (26), respectively. Note that the results are essentially 
identical. The energy profile for the system with the barrier of the height of 100 kT is depicted by 
the dotted line. 
 
Fig. 7. Comparison of integrands f1(x1) (dashed line) and f2(x2) (solid line) calculated in a system 
with a high energy barrier.  
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