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bstract

We discuss the existing 2D and 3D random sequential adsorption (RSA) models and demonstrate that some of the assumptions used in these
odels can lead to incorrect results. Specifically, neglecting the particle–surface interaction at a distance from the adsorption surface in the 2D
odel can result in overestimating the surface blocking effect, while the assumption of the rectilinear particle trajectory in the model 3D can lead

o inaccurate pair correlation functions. Next, we propose a new RSA approach that overcomes these shortcomings of the 2D and 3D models
nd allows modeling soft colloidal particle deposition (irreversible adsorption) on surfaces precovered with smaller particles. This approximate

odel allowing electrostatic interaction of colloid particles at a charged interface employs a many-body superposition approximation and considers

dsorbing particle curvilinear trajectory in the thin electrolyte layer adjacent to the interface. Finally, we derive approximate analytical expressions
or the available surface function of the adsorbing particle in the limit of low surface coverage, applying the 2D scaled-particle theory with a
odification for the sphere geometry and electrostatic interaction.
 2006 Elsevier B.V. All rights reserved.
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. Introduction

The adsorption and deposition (irreversible adsorption)
f colloids and bioparticles at solid/liquid interfaces are of
reat significance in many natural and practical processes
uch as water and wastewater filtration, membrane filtra-
ion, papermaking, flotation, protein and cell separation,
nzyme immobilization, membrane biofouling, and artifi-
ial organ transplant. Often in these processes, especially
n filtration, polydisperse suspensions or mixtures appear,
.g., colloid/polymer, colloid/macroscopic particle, or pro-
ein/surfactant. As a result of their higher diffusivity, the
maller components of the mixture will adsorb preferentially

t the interface, forming a layer that may prohibit consecutive
eposition of larger particles. This effect leads to a considerable
ecrease in the kinetics of larger-particle accumulation at the
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nterface, as reported in the literature [1–3]. Similar problems
ften appear in model experiments concerned with protein or
olloid–particle adsorption when the usual substrate cleaning
rocedure may produce a nanosized contaminant layer difficult
o detect by conventional means. In respect to both charge
istribution and geometry, formation of such a layer will
roduce surface heterogeneity, which is expected to influence
he kinetics and maximum coverage of the adsorption experi-

ents. Thus, modeling of adsorption phenomena at precovered
urfaces seems an important and challenging task that can be
ccomplished using a variety of approaches. Among them, the
andom sequential adsorption (RSA) approach seems to be the
ost suitable one because of its simplicity and efficiency.
The classical RSA model considers a sequence of trials of

article adsorption on a homogeneous interface [4–6]. Once
n empty surface element is found, the particle is perma-

ently fixed, with no consecutive motion allowed. Otherwise,
he virtual particle is rejected and a next-addition attempt is
ndertaken. Since the 1980s a number of extended RSA mod-
ls have been developed that include the effects of particle

mailto:pawel@lanl.gov
dx.doi.org/10.1016/j.colsurfa.2006.08.018
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hape [7–11], Brownian motion [12–15], external force [16–19],
article–particle [20–22] and particle–interface [23] electro-
tatic interaction, colloid–particle polydispersity [24–26], and
urface heterogeneity [27–30]. The results based on RSA sim-
lations allow us to predict particle monolayer structure and
he jamming coverage of particles. One may use the model to
redict particle-adsorption kinetics as well, although depending
n the particle-transport mechanism, an appropriate analysis of
eal adsorption problems can require inclusion of a correction for
ulk transport or the hydrodynamic scattering effect [31]. Thus,
SA modeling can be a powerful tool in the study of irreversible
dsorption of macromolecules, proteins, and colloid particles.

As discussed in this paper, however, both 2D and 3D RSA
odels that consider the effects of electrostatic interaction,

ften exploited for the interpretation of experimental results, are
reatly simplified, and their application to bimodal systems can
esult in incorrect predictions. Therefore, the goal of this paper
s to propose a new, more realistic adsorption approach. After a
hort discussion of the two existing models, we present the new
urvilinear trajectory (CT) RSA approach of particle adsorption
hat includes the electrostatic interaction at the adsorption sur-
ace. We also derive approximate analytical expressions for the
vailable surface function of the adsorbing particle in the limit
f low surface coverage, applying the 2D scaled-particle theory
ith a modification for the sphere geometry and electrostatic

nteraction.

. General considerations

We will describe particle deposition at heterogeneous sur-
aces using the two-stage RSA model exploited in our earlier
tudies [3,27,28,32,33], extended by including particle energy
onsiderations as described later on. First, the heterogeneous
urface is produced by covering a homogeneous interface with
s small spherical particles of radius as. (In what follows, the

ubscripts s and l will always refer to small and large particles,
espectively.) Then, adsorption of the larger particles (having a
adius al) at such prepared random surface can be simulated. At
oth stages the number of adsorbed particles can be expressed
n terms of dimensionless surface coverage defined as:

i = πa2
i Ni

S
, i = s, l, (1)

here S is the geometrical area of the interface.
The particle adsorption probability Bi, called available sur-

ace function or blocking parameter, can be calculated for a given
overage θs and θl using the method of Schaaf and Talbot [5] by
xploiting the definition:

i(θs, θl) = N0
succ

N0
att
, i = s, l, (2)

here N0
att and N0

succ are the overall and successful number of

dsorption attempts, respectively, performed at fixed θs and θl.

Obviously, at both deposition stages the particle–particle
nteraction and particle–interface interaction play a crucial role,
nfluencing the kinetic and structural aspects of adsorption.

m

w
t
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nfortunately, an exact determination of the interaction energy
etween particles near the adsorption surface in a general case
eems prohibitive because of the inherent many-body problem.
owever, as demonstrated in Ref. [23], in the case of short-

anged interactions and not very low surface potentials, the
an der Waals attraction is negligible, and the superposition
pproximation of the electrostatic interaction offers satisfactory
ccuracy of the total particle potential at the collector surface.
ven with this simplification, including electrostatic interac-

ion in the RSA model of adsorption at precovered surfaces is
ot an easy task. It should be remembered that RSA simula-
ions exploit a Monte Carlo technique, which is strictly suitable
or systems at equilibrium. Extending the technique to model
ransport-related or irreversible phenomena should carefully be
onsidered to avoid unrealistic or unreasonable results. In the
ollowing sections, we discuss the three extended RSA models
ncluding electrostatic interaction. In what follows we assume
onstant potentials on all surfaces.

. 2D model

Historically, the first model of RSA allowing electrostatic
nteraction among colloid particles was proposed by Adamczyk
t al. [20] and is known as the 2D RSA model. This model
eglects the particle transport from the bulk, assumes the perfect
ink particle–interface interaction, and adopts the Monte Carlo
ethod of calculating the adsorption probability. It exploits the
oltzmann distribution for the interparticle potential and takes

nto account only the lateral electrostatic interaction force. The
nteraction energy is calculated according to the linear superpo-
ition approximation (LSA) [34], with a dimensionless coeffi-
ientα accounting for the interface effect on the particle–particle
ateral interaction, which is expected to be on the order of 0.5.
hysically, this means that in the 2D model, the lateral repulsion
f adsorbing particles is decreased by a half because of the over-
apping of the particles’ electric double layers and the double
ayer originating from the adsorption surface. For two spheri-
al particles with radii ai and aj, separated by the gap width
1 = h1/ai, expressed in particle radii ai, the repulsive energy in

he kT units is equal to:

ij(H1) = αε
kT

e2 YiYj
aj

1 + aj/ai +H1
exp(−κaiH1),

, j = l, s, (3)

here ε is the dielectric constant of the medium, e the electron
harge, κ−1 =

√
103 εkT/(8πe2INA) the Debye length in cm,

the electrolyte ionic strength expressed in mol/dm3, NA Avo-
adro’s number, and Yi and Yj are the effective surface potentials
f the particles given by the following equation [35]:

m = 8tgh (ψ̄m/4)

1 +
√

1 − [(2κam + 1)/(κam + 1)2] tgh2(ψ̄m/4)
,

= i, j, (4)

here ψ̄m = ψm(e/kT ) is the dimensionless surface potential of
he particle m, and ψm its surface potential. The total adsorbing



2 hysic

p
t
i

α

A
a
A
a
c
d

i
t
a
i
b
a

F
a
b
F
F
m
f
p
v

t
l
a
c
p
t
f
p
s
s
t
c

4
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article potential is calculated using the additivity principle for
he pair interactions. In this paper we always use i = l in case of
�= j.

Obviously, in the case of a very thin electric double layer,
= 1, while for κai < 10, it is reasonable to expect α< 0.5 (see
ppendix A). Thus, α can be considered a fitting parameter,

llowing for some kind of correction for the surface interaction.
s discussed in Ref. [20], in the case of monodisperse systems

nd thin double layers, calculating the exact value of α is not
rucial, because the interparticle potential used in the model is
etermined mostly by the exponential term appearing in Eq. (3).

Another situation arises when the particles are asymmetric
n size, as plotted in Fig. 1. Then, even at a thin double layer,
he adsorbing particle attraction to the interface can result in

strong decrease of the particle–particle repulsion force. This

s especially the case when the repulsion and attraction forces
ecome comparable at some distance from the interface and so at
larger interparticle distance. Consequently, the barrier to par-

ig. 1. Schematic representations of interaction forces acting on a large particle
pproaching a homogeneous interface next to a small particle: (a) F⊥ and Flp

ecome comparable at some distance from the interface, the net force Fa equals

ll (b) F⊥ and Flp become comparable very close to the interface, the net force

b equals Fll, (c) the net force Fc equals Flp according to the perfect sink
odel. Fls and Flp are the electrostatic particle–particle and particle–interface

orces, respectively. Fll and F⊥ denote the Fls vector compounds parallel and
erpendicular to the interface, respectively. Note that unlike Fa, the Fb force
alue is reasonably well approximated by Fc.
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icle adsorption in such a system is relatively low, as discussed
ater on. Therefore, the 2D RSA model seems to be a reasonable
pproximation in a system where the attractive (driving) force
an be considered to be much smaller than the repulsive
article–particle force, even close to the adsorption surface, and
hus corresponds to the perfect sink model. This condition is
ulfilled to a reasonable extent in the case of a very low surface
otential of the interface, although the problem of particle
urface diffusion or adsorption reversibility can arise in such a
ystem. If the condition is not obeyed, however, one may expect
hat the surface-blocking effects predicted for adsorption on pre-
overed surfaces using the 2D RSA model can be overestimated.

. 3D model

The second RSA approach that allows electrostatic interac-
ion, called the 3D RSA model, was proposed by Oberholzer
t al. [23] and then extended to bimodal systems by Weroński
33]. Unlike the 2D model, this approach considers the particle
ransport from the bulk, assuming that neither electrostatic inter-
ction nor Brownian motion causes a shift in the lateral position
f the adsorbing particle as it moves toward the collector surface.
uring this motion, the total particle potential can be calculated

ccording to the formula:

i(H) =
n∑

m=1

Eij(Hm) + Eip(H), i, j = l, s, (5)

here H = h/a1 is the particle–interface gap width expressed in
article radii ai, n the number of the small and large particles
ttached to the collector surface in the vicinity of the adsorbing
article, Hm the minimum surface-to-surface distance between
he moving particle and the deposited particle m, Eij the electro-
tatic (repulsive) interaction energy between them, and Eip the
lectrostatic (attractive) interaction energy between the particle
nd the collector surface. The repulsive particle–particle interac-
ion can be calculated using Eq. (3), derived from the LSA with
= 1, and the attractive electrostatic energy between the trav-

ling spherical particle and the adsorption surface is given by
he limiting forms of Eqs. (3) and (4) when one of the particles’
adii tends to infinity.

In general, a total interaction energy profile Ei(H) is pro-
uced by a combination of the repulsion exerted by the particles
ttached at the points (Xm, Ym), with the attraction exerted by
he surface. As a consequence, the profile has a maximum Eb
Xv, Yv, X1, Y1, . . ., Xn, Yn), which represents a kinetic bar-
ier to adsorption of the virtual particle at the point (Xv, Yv).
ts height depends on the configuration of deposited small and
arge particles. Using the Boltzmann distribution, one can cal-
ulate the particle adsorption probability at the given point
f the adsorption surface. Fig. 2 presents the total interac-
ion energy profiles corresponding to the simplest system, in
hich the large particle moves toward the surface next to the
mall, adsorbed particle. We assume the following parameters:
s = 250 nm, al = 625 nm, ψs =ψl = −50 mV, ψp = 100 mV, and
= 10−4 M. The profiles correspond to three different values of
he dimensionless particle center-to-center distance projection
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Fig. 2. Electrostatic interaction energy profiles calculated for the large particle
approaching the surface next to the small particle in 3D RSA. The plots represent
results based on Eq. (5). The dash-dot-dot line depicts the large particle–interface
attraction. Dotted and solid lines correspond to the particle–particle repulsion
and the total energy profiles, respectively. Circles, squares, and triangles indi-
cate results obtained for R2 = R0 + 2/κal, R2 = R0 + 1.2/κal, and R2 = R0 + 0.8/κal,
respectively, where R0 = 2/

√
λ. See more details in the text.
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Fig. 3. Three different approaches of random sequential adsorption at precovered surf
models. The schemes show the large spherical particle at the energy barrier, where the
net force acting on the particle at the barrier. Note that because of the smaller particle
repulsion than the 3D and CT models. Unlike the 3D model, the CT RSA model ass
begins to move curvilinearly.
chem. Eng. Aspects  294 (2007) 254–266 257

ength R2 = r2/al =
√

(Xl −Xs)2 + (Yl − Ys)2. Based on the
lots, one can conclude that the energy barrier occurs at some
eight above the adsorption surface and that the barrier height
ncreases when the projection length R2 decreases.

Although the authors of Ref. [23] claim that the 3D RSA
odel is more realistic, one should remember that the physics

f this approach is still greatly simplified. The assumption that
he particle trajectory is perpendicular to the interface seems
rtificial, especially for a particle overcoming the energy barrier,
here the lateral component of the repulsive particle–particle

orce dominates. We can expect that, according to the Boltzmann
istribution, most of the particles passing the energy barrier have
elatively low kinetic energy (see Appendix B). More important,
n the thin layer of the electrolyte adjacent to the interface, the
urface forces, including the lateral particle–particle repulsion,
ecome very large compared with the unit kT/ai, characterizing
hermal motion of the particle. Therefore, in the surface layer
he particle will move approximately along the force lines of the
lectrostatic field. Thus, although the 3D RSA model seems to be
reasonable approach for studies of kinetic aspects of adsorption
henomena, it fails to provide appropriate monolayer structures.
onsequently, one can suppose that computed jamming limits
ight be inaccurate as well.

. CT model

The shortcoming of the 3D RSA model inherent in the
ssumption of the rectilinear trajectory of the adsorbing particle
an be overcome by allowing curvilinear particle trajectory
uring its travel toward the adsorption surface. As discussed
arlier, most of the particles passing the energy barrier move
pproximately along the force lines of the strong electrostatic
eld at the interface. The particle trajectory can be calculated
ccording to the forces acting on the particle, starting from the
oint where the energy barrier was found (see Fig. 3) up to

he point corresponding to the particle–interface contact. This

odification delivers a new model that we will call CT RSA. In
he simplest formulation of this model, the trajectory is deter-
ined assuming the mutual compensation of hydrodynamic

aces. Bold lines depict trajectories of the large-particle center considered in the
adsorption probability is calculated, at the same distance R2. Fl represents the

–particle distance in the 2D RSA model, this approach predicts much stronger
umes that immediately after crossing the energy barrier, the adsorbing particle
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nd dispersion forces between the interface and the particle
pproaching it. Furthermore, particle–particle hydrodynamic
nd dispersion interactions, external forces, and rotational
otion as well as convection and Brownian motion in the thin

ayer are neglected. Therefore, the virtual particle trajectory can
e calculated based on the deterministic equation of the motion:

dRi

dτ∗i
= Fi(Ri), (6)

here Ri = ri/ai is the virtual-particle position vector in the

i units, τ∗i = ta2

i /D
∞
i the dimensionless time, t the time in

, D∞
i = kT/6πηai the diffusion coefficient of the particle

n the bulk, η the solution dynamic viscosity, and Fi the net
orce acting on the particle, expressed in the kT/ai units and

e
t
v
l

Fig. 4. Flow chart of the main simulat
ochem. Eng. Aspects 294 (2007) 254–266

alculated according to the equation:

i(Ri) = −∇Ei(Ri) (7)

here Ei(Ri) is the total particle potential given by Eq. (5).
ote that Eq. (6) is the well-known Stokes formula relating the
elocity of a spherical particle in the creeping flow to the force
cting on the particle, expressed in the dimensionless form.

It should be noted that, in the CT model, the probability of
article adsorption at the final point of its trajectory is consid-
red to be equal to the probability of the particle appearing at the

nergy barrier, calculated according to the Boltzmann distribu-
ion, as in the 3D model. If no energy barrier exists at the chosen
irtual coordinates Xv, Yv, the particle trajectory is not calcu-
ated. Instead, the minimum gap width H between the surface

ion loop of the CT RSA model.
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f the virtual particle and the interface is determined for these
oordinates, under the condition of non-overlapping other, ear-
ier adsorbed particles. If the gap width H is equal to zero, the
irtual particle is adsorbed at the point (Xv, Yv, 1), with the
robability equal to one. Otherwise, the probability of particle
dsorption is calculated at the point (Xv, Yv, H + 1), which is
onsidered to be the starting point of the virtual-particle trajec-
ory. The flow chart of the main simulation loop is presented in
ig. 4.

There is no conceptual difficulty in incorporating thermal
otion, convection, or other types of interaction into the model,

lthough incorporation may require some modification of the
ethod used for choosing the particle’s starting position. Eq. (6)

hen becomes the stochastic Langevin-type equation that is the
ase of the Brownian Dynamics (BD) method [36]. Therefore,
sing the more-sophisticated equations leads to a “smart” BD
odel. In spite of rapid development in computer technology,

owever, the computational expense of such simulations is still
igh, which makes the simple CT RSA model attractive and
seful.

. Analytical approximation

It is important to compare numerical results of computer
imulations with analytical solutions that can be derived for
pecial or limiting cases. Such a comparison allows verifica-
ion of the used assumptions and correctness of the algorithm.
ecause of a lack of appropriate expressions for the available

urface function in the case of the RSA of spherical particles
t precovered surfaces, we have to test results of our simu-
ations in terms of the equilibrium adsorption approach. This
pproach seems reasonable because the available surface func-
ions for the RSA and equilibrium processes are indistinguish-
ble in the early stage of deposition at low surface coverage
5]. For the equilibrium adsorption approach, we need to derive
nalytical formulae predicting the available surface function
n equilibrium systems containing a bimodal mixture of soft
pheres at an interface. We exploit the extension of the effective
ard-particle approximation to bimodal systems described in
ppendix C.
According to the scaled-particle theory formulated in Ref.

37] and then extended to multicomponent mixtures in Refs.
38,39], the equilibrium available surface function for the
imodal suspension of disks is given by the expression:

id = − ln

(
μRid
kT

)

= (1−θd) exp

[
−3θid+γ(γ + 2)θjd

1 − θd
−
(
θid + γθjd

1 − θd

)2
]
,

(8)

hereμRid is the residual potential of the particles i; i,j = l,s; θid =

a2
idNid/S is the disk surface coverage; aid and Nid are the radius

nd number of the adsorbed disks, respectively; θd = θld + θsd,
nd γ = aid/ajd is the disk size ratio. It should be noted that Eq.
8) describes a 2D system of hard discs only.

d

B
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However, a useful approximation of the effective hard-sphere
vailable surface function can be formulated by redefining the
eometrical parameter γ . Expanding Eq. (8) in the power series
f θid (up to the order of two), one obtains the following expres-
ion [28]:

id
∼= 1 − 4θid − (γ + 1)2θjd, (9)

hich is valid for low surface coverage. In the case of the
imodal system of the effective hard spheres, it can be deduced
rom geometrical considerations that at low coverage, when the
dsorbed particles are far apart, the large-particle available sur-
ace function is equal to:

i
∼= 1 − 4

(
d∗
ii

2a∗
i

)2

θ∗i − 4λ∗θ∗j , (10)

here λ= ai/aj is the spherical particle size ratio, dij the parti-
le center-to-center distance projection length, and the asterisk
ndicates the effective geometrical properties. Note that the terms
roportional to θ∗i and θ∗j represent the surface excluded because
f the adsorbed particles i and j, respectively.

In the case of monodisperse systems, the last term of Eqs. (9)
nd (10) vanishes; therefore, in the limit of low surface coverage,
he available surface functions of the small disks and spheres
educe to the well-known formulae Bsd

∼= 1 − 4θsd andBs ∼= 1 −
θ∗s , respectively. We used Eq. (C.7) in Appendix C to get the last
ormula. The formulae can be matched when θsd = θ∗s . Taking
his into account, we notice that in the case of bimodal systems,
he available surface functions of the large disk and the effective
arge sphere – Eqs. (9) and (10), respectively – can be matched
hen

ld =
(
d∗
ll

2a∗
l

)2

θ∗l and γ = 2
√
λ∗ − 1. (11)

Substituting Eqs. (C.8) through (C.11), one gets

ld =
(
d∗
ll

2al

)2

θl, θsd =
(
d∗
ss

2as

)2

θs, and γ = 2
d∗
ls

d∗
ss

− 1.

(12)

This result drives us to the conclusion that the large-
phere available surface function in the bimodal interacting
pherical–particle system in the low coverage limit can be
pproximated by the equation:

l = (1 − θd) exp

[
−3θld + γ(γ + 2)θsd

1 − θd
−
(
θld + γθsd

1 − θd

)2
]
,

(13)

here variables θld, θsd, and γ are defined by Eqs. (12).
The limiting analytical expression for the large-particle avail-

ble surface function corresponding to the initial adsorption flux
f the large particles at surfaces precovered with the small ones,

erived at θl = 0, is

0
l = (1 − θsd) exp

[
−γ(γ + 2)θsd

1 − θsd
−
(

γθsd

1 − θsd

)2
]
. (14)
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It should be mentioned that Eqs. (13) and (14) can be inter-
reted as the adsorption flux only in a system where both
ulk transport and the hydrodynamic scattering effect can be
eglected [31].

. Conclusion

In this paper we analyze three extended RSA models includ-
ng electrostatic interaction. The simplest version of the model
llowing the soft interaction is the 2D RSA model, which
ssumes the perfect sink particle–surface interaction and con-
iders just the lateral particle–particle interaction. The param-
ter α used in the model allows some kind of correction for
he particle–interface interaction. The analysis presented in the
aper suggests that this model can overestimate the surface
locking effects, especially if the adsorption process is con-
ucted at an interface partially covered with smaller preadsorbed
articles. The analysis of the more-sophisticated model 3D RSA,
hich considers the electrostatic particle–interface interaction,

uggests that the model can adequately describe the kinetic
spects of adsorption. However, because the rectilinear parti-
le trajectory is assumed, the pair correlation function predicted
y this model can be inaccurate, especially at high surface cover-
ge. It seems that at present the best tool for studying the kinetic
nd structural aspects of adsorption is the CT RSA model, which
ncludes the electrostatic particle–interface interaction and con-
iders the curvilinear particle trajectory at a relatively low com-

utational cost. Depending on requirements, the model can be
odified to include additional effects such as external forces

r convection or Brownian motion. Application of the effective
ard-particle concept allows extension of the scaled-particle the-

E

t
o

ig. A.1. A schematic view of the electrostatic interaction of two spherical particles n
ines) perpendicular to the plane of the picture form a close surface S around the char
resented because their effect can always be discounted if they are chosen far enough
otential becomes negligible (white surface). The thickness of the double layer at the
a parameter and only linearly on the surface potential. Note that everywhere on S3, th
urface S4 is perpendicular to the interface. Bold lines depict the parts of the surfaces
nd S1p are separated and that the potential on the surfaces S1p and S2p is identical. Th
pherical particles with no interface.
ochem. Eng. Aspects 294 (2007) 254–266

ry for bimodal systems of soft particles. The derived analytical
ormulae for the available surface function can be used for test-
ng the numerical results in the range of low surface coverage.
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ppendix A

Let us accept the assumption used in Ref. [20] that the
roximity of the interface does not modify the particle surface
otential, and vice versa. As discussed in Ref. [20], the lateral
nteraction force of two (large) spherical particles at the inter-
ace can be calculated as the surface integral over the contour
hown schematically in Fig. A.1 [34]:

ll = −
∫
S

[(
�p+ εE2

8π

)
n − ε

4π
(E · n)E

]
dS, (A.1)

here�p ≈ kTIψ̄2 is the osmotic pressure at a given point rel-
tive to the bulk value, ψ̄ = ψ(e/kT ) the dimensionless electric
otential at this point, ψ the electric potential, n the unit vector
ormal to the closed surface S composed of the plane surfaces
1, S2, S3, and S4, and
= −∇ψ (A.2)

he electric field strength vector. The surface integral (A.1)
ver S3 is zero if the surface is drawn sufficiently far from

ext to an interface at high ionic strength. The surfaces S1, S2, S3, and S4 (dashed
ged spherical particle. Two surfaces parallel to the plane of the picture are not
from the particle. Dotted lines depict the borders of the area where the electric
interface and at the particles is similar because it depends exponentially on the
e potential vanishes. Because of the symmetry, the force contribution from the

S1 and S2 over which the integration has to be conducted. Note that surfaces S1l

erefore, the total lateral force is equal to the force acting between two isolated
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Fig. A.2. A schematic view of the electrostatic interaction of two spherical
particles next to an interface at low ionic strength when the spherical electric
double layers overlap very little. Bold lines (black and white) depict the parts of
the surfaces S1 and S2 where the potential does not vanish. Due to the symmetry,
the force contribution from the surface S4 is perpendicular to the interface. Note
that the potential is different only on the small parts of the surfaces S1p and
S2p, namely on the circles S1l and S2l. Therefore, the integration needs to be
c
p
t

t
o
F
i
o
c
c

F

w
p
t
N
t

i
i

ψ

a

w
d
t
(
f
p
l
c
w
i
t
t
d

s
p
f

l
t
a
fi
a
–
t
s
e
o
T
v
b
a
p

s
p
T
S
o
e
n
f
f

ψ

E

r
a

F

ψ

E
l
c
(
b
t
a
t
i
a
u
E

onducted just over these surfaces. Note also that any point P on the circle S1l is
laced nearer the interface than the particle surface; therefore, the potential on
he circle will be dominated by the contribution originating from the interface.

he interface. Moreover, if the ionic strength is high enough
r if the particles’ electric double layers overlap very little (see
igs. A.1 and A.2), then because of the symmetry, the surface

ntegral over S4 gives a perpendicular component of the force
nly. In these cases the lateral force can be calculated from the
ontributions originating from the parallel planes S1 and S2. It
an be expressed as:

||
ll =

∫
S1

[
(�p1 −�p2) + ε

8π
(E2

||1 − E2
||2)
]

dS1, (A.3)

here�pi ≈ kTIψ̄2
i , ψ̄i is the osmotic pressure and the electric

otential on the surface Si, and i = 1, 2. E||i is the component of
he field strength vector parallel to the surface Si on this surface.
ote that the positive value of the lateral force corresponds to

he particle–particle repulsion.
According to the LSA, the electric potential ψ̄i at a point P

s a sum of contributions originating from the particles and the
nterface, which are given by the following equations:

¯ l = Yl

H1 + 1
exp[−κal(H1 + 1)]

nd ψ̄p = Yp exp(−κalH), (A.4)

here H1 = h1/al and H = h/al are the dimensionless minimum
istances between the point P and the surface of the particle and
he interface, respectively. The electric potential decays rapidly
at least exponentially) with the distance from the charged sur-
aces. Therefore, there always exists a distance hmax from the
article or interface surface, at which the potential becomes neg-
igibly small (ψ≈ 0, white area in Fig. A.1). Consequently, we
an limit the surface integration to those parts of the surface S1
here the potential or the field strength vector does not vanish,
.e., S1l and S1p, where the subscripts l and p mean the part of
he surface where the potential is not equal to zero because of
he particles and the interface, respectively. Also note that the
istance hmax is relatively weakly (linearly) dependent on the

e
t
(
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urface potential. Therefore, even if the surface potential of the
article and the interface differ by a few times, the distance hmax
rom both surfaces is going to be similar.

At very high ionic strength, when the parameter κal is very
arge, the surfaces S1l and S1p are separated (see Fig. A.1). Then,
he electric potential and the field strength on the surface S1p

nd the corresponding surface S2p are equal to the potential and
eld strength because of the interface alone: ψ̄1 = ψ̄2 = ψ̄p

nd E||1 = E||2 = E||p. Therefore, the surface integral – Eq. (A.3)
over the surface S1p vanishes, and the total lateral force is equal

o the surface integral over the surface S1l. The potential and field
trength on this surface and on the corresponding surface S2l are
qual to the potential and field strength because of the system
f two isolated particles (with no interface in their vicinity).
herefore, the lateral interaction of the spherical particles at a
ery large value of the κal parameter can be accurately described
y Eq. (3), with the parameter α= 1. Physically, this means that
t very high ionic strength, the interface has no effect on the
article–particle lateral repulsion.

At low ionic strength, when the parameter κal is small, the
urfaces S1l and S1p overlap. Let us consider very weak overlap-
ing of the spherical electric double layers first (see Fig. A.2).
hen, the surfaces S1l and S2l are parts of the surfaces S1p and
2p, respectively. The electric potentials and the field strength
n all the surfaces S1p and S2p, except the parts S1l and S2l, are
qual: ψ̄1 = ψ̄2 = ψ̄p and E||1 = E||2 = E||p. Therefore, the only
on-vanishing contribution to the integral – Eq. (A.3) – comes
rom the surface S1l. The potential and field strength on the sur-
ace S1l and on the corresponding surface S2l are equal:

¯ 1 = 2ψ̄l + ψ̄p,

||1 = 2E||l + E||p, ψ̄2 = ψ̄p, and E||2 = E||p, (A.5)

espectively. Taking this into account we can express Eq. (A.3)
s:

||
ll =

∫
S1

[
4kTIψ̄l(ψ̄l + ψ̄p) + ε

2π
E||l(E||l + E||p)

]
dS1.

(A.6)

As discussed in Ref. [20], ψ̄l is usually of an opposite sign to
¯ p in order to ensure particle adsorption and adhesion. So are
||l and E||p, because of Eq. (A.2). In the case of very weak over-

apping of the electric double layers; however, the distance H1
alculated for any point P of the surfaces S1l is going to be larger
about two times on average) than the distance H. Therefore,
oth terms of the integrand appearing in Eq. (A.6) will be nega-
ive. Physically, this means that in the case of low ionic strength
nd a relatively large distance between particles at the interface,
here will be a weak attraction between the particles—the lateral
nteraction will not diminish the particle adsorption probability
t such a distance. From the perspective of the Monte Carlo sim-
lations, this can be expressed by taking the coefficient α= 0 in
q. (3).
Let us next consider stronger overlapping of the particles’
lectric double layers (see Fig. A.3). Now, because of the poten-
ial distribution asymmetry, we also need to calculate the integral
A.1) over parts of the surface S4, namely over the surfaces S41,
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Fig. A.3. A schematic view of the electrostatic interaction of two spherical particles next to an interface at low ionic strength when overlapping of the spherical
electric double layers becomes stronger. Black and white bold lines depict the parts of the surface S over which the integration has to be conducted. Note that
because of the potential asymmetry at the surface S4, we need to integrate over the identical surfaces (segments of a circle) S41, S42, and S43, where the potential is
dominated by the contribution originating from the interface. Also note that the surfaces S1p and S1l, as well as the surfaces S2p and S2l, only paratially overlap. At
the particle–particle gap width about two-times larger than the distance hmax from the interface (like in the picture), the absolute values of the potentials ψ̄l and ψ̄p,
as well as the absolute values of the field strength E||l and E||p, become comparable, and the integral (A.6) over the overlapping part of the surface S1l vanishes. Then,
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he only non-vanishing contribution to the lateral force F ||
ll

comes from the part
small and relatively remote segment of the large circle formed by the intersect
re as in the system of two isolated particles. Therefore, the lateral force in this

42, and S43. Note that the three surfaces have identical shape
nd surface area. The lateral component of the force can orig-
nate only from the second term of the integrand appearing in
q. (A.1). It can be expressed as:

||
ll4 = ε

4π

[∫
S41

(Ep⊥ + El1⊥ + El2⊥)(El1|| + El2|| )dS41

−
∫
S42

(Ep⊥ + El1⊥)El1|| dS42 −
∫
S43

(Ep⊥ + El1⊥)El1|| dS43

]
,

here the subscripts || and ⊥ mean the compounds of the field
trength vectors parallel and perpendicular, respectively, to the
urface S4, and the superscripts p, l1, and l2 mean the contribu-
ions of the field strength vector originating from the interface,
eft and right particle, respectively, as they are presented in
ig. A.3. However, everywhere on the surfaces S41, S42, and
43, we have |Ep⊥| 
 |El1⊥| and |Ep⊥| 
 |El2⊥|; therefore,

||
ll4 ≈ ε

4π

[∫
S41

E
p
⊥(El1|| + El2|| )dS41 −

∫
S42

E
p
⊥E

l1|| dS42

−
∫
S43

E
p
⊥E

l1|| dS43

]
,

nd because of the symmetry

||
ll4 ≈ ε

4π

[∫
S41

E
p
⊥E

l2|| dS41 −
∫
S43

E
p
⊥E

l1|| dS43

]
= 0.

Thus, the total lateral force F ||
ll can be calculated by integra-
ion over the surface S1 as in the case of very weak overlapping
f the electric double layers. Again, the only non-vanishing con-
ribution to the integral – Eq. (A.3) – comes from the surface S1l.
ote that in this configuration, the surface S1l partially overlaps

i
f
e
fi

surface S1l that does not overlap the surface S1p. This part of the surface S1l is
the two spherical electric double layers, where the potential and field strength

guration is much smaller than a half of that between the two isolated spheres.

he surface S1p. Similarly, the surface S2l partially overlaps the
urface S2p. The potential and field strength on the overlapping
arts of the surfaces S1l and S1p, and on the overlapping parts
f the corresponding surfaces S2l and S2p can be expressed by
q. (A.5). The lateral force contribution originating from this
art of the surface S can be calculated according to Eq. (A.6).
e can always find such a particle–particle gap width hc (that

s about two-times larger than the distance hmax from the inter-
ace), at which the absolute values of the potentials ψ̄l and ψ̄p,
s well as the absolute values of the field strength E||l and E||p,
ecome comparable. At this distance between the particles, the
ntegral – Eq. (A.6) – vanishes. Then, the only non-vanishing
ontribution to the lateral force F ||

ll comes from the part of the
urface S1l that does not overlap the surface S1p. The poten-
ial and field strength on this part of the surface S1l and on the
orresponding part of the surface S2l are equal to the poten-
ial and field strength because of the system of two isolated
articles (with no interface in their vicinity) at the minimum
urface-to-surface distance hc. However, this part of the surface
1l is only a small and relatively remote fraction of the large
ircle formed by the intersection of the two spherical electric
ouble layers; therefore, the lateral force is much smaller than
half of the force acting between the two isolated spherical

articles at the gap hc. Obviously, the particle–particle potential
nergy, calculated by integration of the lateral force over the dis-
ance changing from infinity to hc, will be even smaller because
he non-overlapping part of the surface S1l decreases with the
ncrease of the distance between the particles and because the

ntegral – Eq. (A.6) – over the non-overlapping part of the sur-
ace S1l becomes negative at the gap wider than hc, as discussed
arlier. Therefore at the particle–particle gap width hc, the coef-
cient α< 0.5.
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Note that at stronger overlapping of the spherical electric
ouble layers, the coefficient can approach the value 0.5 or even
ecome larger. In such a configuration, however, the particle
otential energy is relatively high, and the adsorption probabil-
ty, decaying exponentially with the value of the energy, becomes
egligible anyhow. On the other hand, at the particle–particle
ap wider than hc, the value of the coefficient α becomes even
maller than that at the gap hc. Therefore, if one wants to use
constant value of the coefficient in the formula (5), then the

alue should correspond to an average or effective value of the
oefficient that is smaller than 0.5.

ppendix B

Let us consider a single central collision of a colloid particle
nd a high-energy solvent molecule in the bulk where the particle
obility and diffusion are isotropic. We assume that the net flow

nd external force acting on the particle are equal to zero and
hat the particle velocity after the collision is small. According
o the Stokes’ law, the value of the viscous force acting on the
article after the collision is equal to:

i

dvi
dt

= −6πηaivi(t), i = s, l, (B.1)

heremi = 4/3πa3
i ρi is the mass of the particle i, vi and ρi are

ts velocity and density, respectively, and η the solution dynamic
iscosity.

Integrating Eq. (B.1) once yields the velocity of the particle

i(t) = vi(0) exp
(
− t

τ

)
, (B.2)

here vi(0) is the particle velocity at the moment of the colli-
ion, and τ = 2a2

i ρi/9η is the characteristic time of the particle
ovement. For a typical colloid particle of the size on the order

f 100 nm in water at room temperature, the characteristic time
s on the order of 1 ns, so the particle velocity is going to decay
ery rapidly.

The value of the particle displacement can be calculated by
ntegrating Eq. (B.2), which yields

ri(t) = vi(0)τ
[
1 − exp

(
− t

τ

)]
. (B.3)

Substituting

i(0) =
√

3kTEk
2πa3

i ρi
, (B.4)

here Ek is the kinetic energy of the solvent molecule in the
T units, we can express the maximum particle displacement
ormalized by the particle radius as:

Rimax = lim
t→∞

�ri(t)

ai
=
√

2kTρiEk
27πη2ai

. (B.5)
We can deduce from Eq. (B.5) that the central collision of
typical colloid particle on the order of 100 nm with a solvent
olecule at kinetic energy on the order of 100kT results in the
aximum particle displacement on the order of 1 nm—so very

w

t
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mall. Note that the molecule kinetic energy Ek needed to move
he particle by a distance of�Rimax increases quadratically with
he value of the displacement.

The molecule kinetic energy resulting in a similar displace-
ent of a colloid particle approaching the energy barrier at the

olid-liquid interface has to be even larger than that for the colli-
ion in the bulk. This is so because the particle moving toward the
nergy barrier is additionally retarded because of the repulsive
lectrostatic interaction, as well as the hydrodynamic interaction
ith the adsorption surface and the adsorbed particles. Accord-

ng to the Boltzmann distribution, however, the probability of the
ollision with a high-energy solvent molecule decreases rapidly
exponentially) with the molecule kinetic energy. Therefore, as
ell as because of the rapid slow down of the particles moving

n the solution, we can expect that the vast majority of the par-
icles approaching the energy barriers at the adsorption surface
ill have a low kinetic energy.

ppendix C

If the required accuracy of computation is not very high,
he modeling of the electrostatic interaction can be simplified
y exploiting the effective hard-particle concept. This method,
riginally developed for calculating the structure of real fluids
40–43] and offering considerable advantages over the direct
ethod of soft-particle simulation, has often been exploited for
odeling colloid phenomena [20,22,44–46]. Instead of mak-

ng complicated and time-consuming computations of particle
nergy, the effective hard-particle algorithms take into consid-
ration a simple overlapping test in which the real geometrical
article dimensions are replaced with the effective ones. Apart
rom simplifying algorithms and achieving a large computa-
ional gain, the effective hard-particle approach allows com-
arison with analytical solutions, which are often known for
ard-particle systems, and thus yields a simple test for validating
umerical results. It is worthwhile to note that the algorithms are
ndependent of the method used for calculating the effective geo-

etrical parameters. We next discuss two methods of calculating
he effective hard-particle diameter for monodisperse spherical
articles and extending the effective hard-particle approach to
imodal systems.

The rigorous theoretical method of determining the relation-
hip between the idealized hard-sphere model and the smoothly
arying repulsive forces found in real fluids was developed based
n the idea proposed by Zwanzig [40]. Zwanzig’s idea consists
n treating the intermolecular forces in a fluid as perturbations on
hard-core potential. Since then, several authors have developed
arious perturbation theories, introducing improved models of
he effective hard particle. In our consideration, we will use
he Barker-Henderson model [43]. According to this model, the
imensionless effective hard-particle diameter is equal to:

∗
ii = ai

∫ ∞
{1 − exp[−Eii(R)]}dR, i = s, l, (C.1)
0

here R = 2 + H1.
In general, the energy Eii can be a complicated function of

he center-to-center distance R, and the integral appearing in Eq.
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C.1) must be computed numerically. It should be mentioned that
q. (C.1) was derived assuming short-range interactions. This
pproximation has been successfully applied to a description of
uids and colloidal suspensions. The model has been extended
nd effectively exploited for nonspherical particles as well [22].

Another, more-intuitive approach was proposed and used
ostly by researchers conducting experimental studies of col-

oids [44–46]. Motivated by the fact that any force becomes
mportant as soon as the work of that force is on the same order
s thermal energy, some authors have chosen αkT (with α≈ 1)
s the value of the particle–particle potential at which to fix the
ffective hard-sphere diameter:

∗
ii = aiR

∗, Eii(R
∗) = α. (C.2)

he value of α has often been obtained by fitting experimental
esults to a hard-particle model. This method was effectively
sed for spheroidal particles [46] as well. As was demonstrated
n Refs. [33,47], the results of the thermal energy approach are
lmost identical to those predicted by the Barker-Henderson
odel when α= 0.5, which corresponds to the characteristic

nergy for one component of the 3D translation Brownian
otion.
The effective hard-particle approach can easily be extended

o a bimodal system. To do so, it is convenient to introduce
he effective hard-particle center-to-center distance projection
ength,d∗

ij , as a generalization of the effective hard-particle diam-
ter d∗

ii. Using the Barker-Henderson approximation and the 2D
SA model, one may define the lengths by the equation:

∗
ij = ai

∫ ∞

0
{1 − exp[−Eij(R2)]}dR2, i, j = s, l, (C.3)
here R2 =
√

(Xi−Xj)2 + (Yi − Yj)2 =
√
R2 − (1 − aj/ai)2

s the dimensionless actual particle center-to-center distance
rojection length.

u
c
t
s

ig. C.1. A schematic description of effective hard-small and soft-large particles a
dsorption surface. Dash-dot lines show the effective interaction range of the large pa
ochem. Eng. Aspects 294 (2007) 254–266

On the other hand, using the thermal-energy approximation,
ne has

∗
ij = aiR

∗
2, Eij(R

∗
2) = 0.5. (C.4)

In the case of the 3D RSA model, Eqs. (C.3) and (C.4), involv-
ng the particle–particle energy Eij, should be replaced with the
quations

∗
ij = ai

∫ ∞

0
{1 − exp[−Eb(R2)]}dR2, i, j = s, l, (C.5)

nd

∗
ij = aiR

∗
2, Eb(R

∗
2) = 0.5, (C.6)

espectively.
One should notice that because of a curvilinear particle tra-

ectory in the CT RSA model, the starting and ending Xv, Yv
article coordinates are different in general. The values obtained
rom Eqs. (C.5) and (C.6) correspond to the starting points of
he effective particle trajectories and thus should be suitable for
stimating the available surface function. On the other hand,
onsidering the structural aspects of adsorption requires taking
nto account the effective final positions of the adsorbing par-
icles. However, the main driving force acting on the particles
pproaching the interface is not diffusion but rather strong elec-
rostatic attraction in the thin layer adjacent to the interface.
herefore, the equilibrium approach presented above does not
eem to be reasonable for predicting the effective final particle
osition. Instead, we can approximate the effective final dis-
ances with the values that correspond to the effective starting
ositions and can be found using Eq. (6). In what follows we
ill use d∗

ij to denote the final distance-projection length corre-
ponding to the effective starting distance.

In general, the effective hard-particle dimensions calculated

sing the above methods are nonadditive in the sense that the
ondition d∗2

ls = d∗
lld

∗
ss, resulting from the simple geometry of

wo contacting spheres on a planar surface, is not obeyed. This
ituation makes further analysis more complicated. Therefore,

t a plane interface. Dashed lines denote shapes of the effective particles and
rticles.
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o ensure additivity of the effective particle dimensions, we will
hoose effective radii in such a way as to have the system of the
mall effective hard particles and the effective interacting large
articles (see Fig. C.1). From the symmetry condition, we get

∗
s = 1

2
d∗
ss, (C.7)

nd from the Pythagorean Theorem d∗2
ls + (a∗

l − a∗
s )2 =

a∗
l + a∗

s )2 we get

∗
l = d∗2

ls

4a∗
s

= d∗2
ls

2d∗
ss

, (C.8)

here variables with a star denote quantities corresponding to
he effective particles.

The effective size ratio is given as:

∗ = a∗
l

a∗
s

=
(
d∗
ls

d∗
ss

)2

(C.9)

see Fig. C.2). As one can see, the increase of the interaction
ange results in a decrease of the effective size ratio, in agreement
ith intuition. Surface coverage of the effective small and large

articles equals

∗
s = θs

(
a∗
s

as

)2

= θs

(
d∗
ss

2as

)2

(C.10)

ig. C.2. Comparison of effective particle size ratios as predicted by two models
f RSA for λ= 1 (reference curve, the dashed line), λ= 2 (squares), λ= 4 (trian-
les). Open symbols refer to the model 2D – Eqs. (C.9) and (C.3) – and filled
nes to the model 3D – Eqs. (C.9) and (C.5). The dashed line denotes identical
D and 3D results.
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nd
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l = θl

(
a∗
l

al

)2
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. (C.11)
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11] Z. Adamczyk, P. Weroński, Random sequential adsorption of spheroidal
particles: kinetics and jamming limit, J. Chem. Phys. 105 (1996) 5562.

12] P. Schaaf, A. Johner, J. Talbot, Asymptotic behavior of particle deposition,
Phys. Rev. Lett. 66 (1991) 1603.

13] B. Senger, J.-C. Voegel, P. Schaaf, A. Johner, A. Schmitt, J. Talbot, Prop-
erties of jamming configurations built up by the adsorption of Brownian
particles onto solid surfaces, Phys. Rev. A 44 (1991) 6926.

14] B. Senger, P. Schaaf, J.-C. Voegel, A. Johner, A. Schmitt, J. Talbot, Influence
of bulk diffusion on the adsorption of hard spheres on a flat surface, J. Chem.
Phys. 97 (1992) 3813.

15] B. Senger, J. Talbot, P. Schaaf, A. Schmitt, J.-C. Voegel, Effect of the bulk
diffusion on the jamming limit configurations for irreversible adsorption,
Europhys. Lett. 21 (1993) 135.

16] R. Jullien, P. Meakin, Random sequential adsorption with restructuring in
two dimensions, J. Phys. A 25 (1992) L189.

17] H.S. Choi, J. Talbot, G. Tarjus, P. Viot, First-layer formation in ballistic
deposition of spherical particles: kinetics and structure, J. Chem. Phys. 99
(1993) 9296.

18] G. Tarjus, P. Viot, H.S. Choi, J. Talbot, Restructuring effects in irreversible
deposition of spheres on a plane, Phys. Rev. E 49 (1994) 3239.

19] P. Schaaf, P. Wojtaszczyk, E.K. Mann, B. Senger, J.-C. Voegel, D. Bedeaux,
Fluctuation of the number of adsorbed particles analyzed by a virial expan-
sion: comparison between experiment and theory, J. Chem. Phys. 102
(1995) 5077.

20] Z. Adamczyk, M. Zembala, B. Siwek, P. Warszyński, Structure and order-
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