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Abstract

Implications of the DLVO theory for problems associated with colloid particle adsorption
and deposition at solid/liquid interfaces were reviewed. The electrostatic interactions
between two planar double-layers described by the classical Poisson—Boltzmann (PB)
equation were first discussed. Then, the approximate models for calculating interactions of
curved interfaces (e.g. spheres) were exposed in some detail, inter alia the extended
Derjaguin summation method and the linear superposition approach (LSA). The results
stemming from these models were compared with the exact numerical solution for two
dissimilar spheres (including the case of sphere/plane interactions) obtained in bispherical
coordinate system. The electrostatic interaction energy was used in combination with
dispersion interactions for constructing the DLVO energy profiles discussed next. The
influence of surface roughness and charge heterogeneity on energy profiles was also
discussed. It was demonstrated that in particle deposition problems the monotonically
changing profiles determined by the electrostatic interactions played the most important
role. In further part of the review the role of these electrostatic interactions in adsorption
and deposition of colloid particles was discussed. The governing continuity equation was
exposed incorporating the convective transport in the bulk and the specific force dominated
transport at the surface. Approximate analytical models aimed at decoupling of these
transfer steps were described. It was demonstrated that the surface boundary layer approxi-
mation (SFBLA) was the most useful one for describing the effect of electrostatic interac-
tion at initial adsorption stages. A procedure of extending this model for non-linear
adsorption regimes, governed by the steric barrier due to adsorbed particles, was also
presented. The theoretical results were then confronted with experimental evidences ob-
tained in the well-defined systems, e.g. the impinging-jet cells and the packed-bed columns

*Corresponding author. Tel.: +48-12-425-2841; fax: +48-12-425-1923.

0001-8686,/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.
PII: S0001-8686(99)00009-3



138 Z. Adamczyk, P. Weroniski / Adv. Colloid Interface Sci. 83 (1999) 137-226

of monodisperse spherical particles. The experiments proved that the initial adsorption flux
of particles was considerably increased in dilute electrolytes due to attractive electrostatic
interactions. This was found in a quantitative agreement with the convective diffusion
theory. On the other hand, the rate of later adsorption stages was diminished by the
electrostatic lateral interactions between adsorbed and adsorbing particles. Similarly, the
experimental data obtained by various techniques (AFM, reflectometry, optical microscopy)
demonstrated that these interactions reduced significantly the maximum monolayer cover-
ages at low ionic strength. This behaviour was found in good agreement with theoretical
MC-RSA simulation performed by using the DLVO energy profiles. The extensive experi-
mental evidences seem, therefore, to support the thesis that the electrostatic interactions
play an essential role in adsorption phenomena of colloid particles. © 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Specific interactions among colloid and larger particles in electrolyte solutions
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determine the rate of many dynamic phenomena occurring in disperse systems, €.g.
aggregation, coagulation, coalescence, flocculation, membrane fouling, phase sepa-
ration, stress relaxation influencing rheology, etc. Equally important are the
interactions of particles with boundary surfaces leading to adsorption, deposition
(irreversible adsorption) and adhesion. A quantitative description of these pheno-
mena has implications not only for polymer and colloid science, biophysics and
medicine, soil chemistry but also for many modern technologies involving various
separation procedures, e.g. water and waste water filtration, membrane filtration,
flotation, protein and cell separation, immobilisation of enzymes, etc.

Due to a large significance of the specific interactions numerous attempts have
been undertaken in the literature to quantify them, including the pioneering works
of Derjaguin and Landau [1,2] and Verwey and Overbeek [3] known as the DLVO
theory. The foundation of this theory was the postulate of additivity of the
dispersion and electrostatic double-layer interactions. The latter were calculated as
pair interactions in an infinite electrolyte reservoir using the Poisson equation with
the ion density distribution characterised in terms of the Boltzmannian statistics. In
this respect, the DLVO theory can be seen as one of many applications of the
Gouy—Chapman-Stern [4-6] electric double-layer model.

This model, and the DLVO theory, was vigorously criticized over the decades
from the statistical mechanics viewpoint for not treating the finite ion-size and the
self atmosphere effects (ion correlation) in a consistent manner [7-13]. As an
alternative, many extensions of the PB equation has been formulated [8—14] by
applying the mean-spherical approximation (MSA) and the Ornstein—Zernicke
equation for the direct correlation function. This led to non-linear integro-differen-
tial-difference equations whose complicated mathematical shape was prohibiting
their more widespread applications. Some explicit results were derived using this
approach in [15-18] for many-body problems (concentrated colloid suspensions).
Both the ion correlation functions and interaction energy profiles were showed to
possess an oscillatory character, i.e. at distance comparable with particle diameter
the interaction energy was predicted negative (attractive) even for equally charged
particles [17]. As pointed out by Ruckenstein [18] this deviation from the DLVO
theory was due to the collective Coulomb interactions among all charged species
particles and ions (including counterions) becoming more apparent for concen-
trated systems. This contrasts with the Sogami [19,20] theory who predicted
deviation from DLVO even for dilute systems, governed by the ordinary PB
equation. As pointed out in Overbeek [21,24], Woodward [22] and Levine [23],
however, the Sogami theory proved incorrect and the basic equations of the DLVO
remain valid for dilute systems.

Other approaches aimed at improving the PB equation were the phenomenologi-
cal theories based on the local thermodynamic balance [25-28]. They allowed one
to consider the dielectric saturation effect [25,28—33] manifesting itself in the
decrease in the medium permittivity at higher field strength or the ion polarisation
effect considered in Levine [34].

Other corrections to the PB equation were introduced by Levin et al. [35-37], in
particular the image and self-atmosphere effect, cavity potential (another formula-
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tion of the ion polarisation effect), medium compressibility (electrostriction effect),
discreteness of charge effect, etc. For a dilute electrolyte, the ion density fluctua-
tions in the diffuse part of the double-layer pose an additional complicating factor
[38]. It should be remembered, however, that many of these corrections play a
significant role under extreme conditions only, rarely met in practice: field strength
larger than 10° V cm™ !, electrolyte concentration above 1 M, etc. Spaarnay [28]
showed for instance the polarisation energy of an ion remains of the order of 0.1
kT unit even for maximum field strength occurring at an interface.

It seems that for higher electrolyte concentration the most important corrections
should originate from the volume excluded effect [25-28,39—41] which has a direct
physical interpretation. Hence, the concentration of counterions accumulating at
regions of high potential cannot exceed some limiting value strictly related to the
ion hydrated radius. It can be easily estimated that these limiting (maximum
packing) values are of the order of 10 M [42]. In principle, the Stern model [3,4]
can be treated as the first attempt of considering the volume excluded effect for
adsorbing ions. It is obvious, however, that for higher surface charges the excluded
volume effect should also affect ion distribution within the diffuse layer. A
quantitative phenomenological description of this effect for an isolated double-layer
(electrode) was first elaborated in Brodowsky and Strehlow [25] and Wicke [26].
The authors introduced the volume blocking parameter analogous to the van der
Waals correction for the self volume. A considerable positive deviation from the
Gouy—Chapman theory was predicted for ion concentrations larger than 0.01 M
and electrode charge density exceeding 12 wC cm™2. Hiickel and Krafft [7] and
Levine and Bell [8] criticized the above approach for not taking into account the
ion self-atmosphere and the cavity potential. However, Spaarnay [28], who also
considered the excluded volume effect, showed that this critique was irrelevant at
least for planar double-layers.

Adamczyk et al. [39-42] studied the influence of the excluded volume effect on
potential distribution between two planar double layers. They also calculated the
pressure between the plates and the force and interaction energy of two colloid
particles of convex shape using the generalised Derjaguin method. It was shown
that this effect, although considerably influencing the potential distribution, played
rather an insignificant role in particle interactions except for very short separations
of the order of 5-10 A [39—41].

In our opinion all the above mentioned refinements of the PB equation and the
DLVO theory lead to second order effects, difficult to be detected in real systems.
They will be masked by such primary effects like charge regulation (exchange
kinetics), surface roughness and heterogeneity or surface deformations always
occurring at short separations. Therefore, we should put forward a thesis that the
classical form of the DLVO theory is adequate for interpreting behaviour of
colloid systems. This thesis seems to be confirmed by the excellent work [43]
concerning the direct force measurements for mica plates in various electrolyte
solutions. The goal of this fragmentary review is an attempt to prove this for the
particle /solid interface systems.

The organisation of our paper is the following: in Section 2 we discuss elec-
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trostatic interactions between two planar double-layers in terms of the classical
Poisson—Boltzmann (PB) equation. Then, the approximate models for calculating
interactions of curved interfaces (e.g. spheres) are exposed in some detail, with the
emphasis on the extended Derjaguin summation method. The results stemming
from these models are compared with the exact numerical solution for two
dissimilar spheres (including the case of sphere/plane interactions) obtained in
bispherical coordinate system. Next, the DLVO energy profiles originating from
the superposition of electrostatic and dispersion contributions are discussed
together with the influence of surface roughness and charge heterogeneity effects.
In further part of our review the role of these interactions in adsorption and
deposition of colloid particles on solid surfaces is considered. The governing
continuity equation is formulated, incorporating the convective transport in the
bulk and the specific force dominated transport at the surface. Approximate
analytical models aimed at decoupling these transfer steps are described, in
particular the powerful surface boundary layer approximation (SFBLA). A proce-
dure of extending this model to non-linear adsorption regimes, governed by the
steric barrier due to adsorbed particles, is also exposed. The theoretical results are
then confronted with experimental data obtained in the well-defined systems, e.g.
the impinging-jet cells and the packed-bed columns using various experimental
techniques of detecting particle monolayers, e.g. AFM, reflectometry, electron and
optical microscopy. The significance of the DLVO theory for interpreting these
data will be pointed out.

2. Electrostatic interactions between particles

The electrostatic force F acting between two charged particles immersed in an
electrolyte of arbitrary composition can be obtained from the constitutive relation-
ship derived by Hoskin and Levine [44]

F = /[[(AP + —Ez)n - —(E A)E|dS (1)

where AP () is the osmotic pressure tensor, {5 is the electrostatic potential, i the
unit vector normal to the surface § surrounding one of the particles, & is the
dielectric constant of the suspending medium which is assumed a field independent
quantity and E = — Vi is the field strength.

In the case of anisotropic particles there appears also a torque on particles
[45-47] which can be expressed by an equation analogous to Eq. (1).

In the limiting case of a flat geometry (two infinite planar interfaces interacting
across electrolyte solution) Eq. (1) reduces to the simple form describing the
uniform force per unit area

A e (dy 2_ 5
F = P(x)_S_w(d_x) = const 2
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where F, P are scalars, x is an arbitrary position between plates, k is the
Boltzmann constant and 7" the absolute temperature.

The interaction energy ¢ can be most directly obtained by integrating Egs. (1)
and (2) along a path starting from infinity [48]. However, in practice, one uses for
this purpose the method developed by Vervey and Overbeek [3] based on the
Lippmann equation.

As can be noticed, for an explicit evaluation of the interaction force or energy
the electrostatic potential distribution in space is needed. This quantity can be
calculated after solving the Poisson—Boltzmann equation with appropriate boundary
conditions. By neglecting the dielectric saturation and assuming that the electrolyte
is composed of N ions of valency z; (exhibiting ideal bulk behaviour) one can
formulate the PB equation in the classical form [48]

dme N .
Y. z;nbe e/ kT 3)

i=1

Vig = —
&
where e is the elementary charge and n? is the bulk concentration of i-th ion.

Due to non-linearity of the PB equation no analytical solutions were found in
the case of multi-dimensional problems, e.g. two spherical particles in space being
of primary practical interest. Only recently cumbersome numerical solutions of this
problem were reported for dissimilar sphere and sphere/plane geometry as dis-
cussed later on.

One of the frequent methods of avoiding mathematical difficulties by solving the
PB equation is the linearisation procedure consisting in expansion of the exponen-
tial terms and neglecting higher order terms. This procedure, which seems justified
for mx(z; ey/kT) < 1 (where mx means the maximum term) converts Eq. (1) into
the simple form

V2 = k2 4)
where

ekT \V?
kK !=Le= (m)
is the Debye screening length, a Z\Parameter of primary interest for any particle
interaction problem and I = — ) z?n’ is the ionic strength of the electrolyte
solution. !

Accordingly, the osmotic pressure tensor assumes for low potentials the simple
form

AP = kTT§1 )

As discussed in Adamczyk and Warszyfiski [48] the significance of Eq. (4) is
further increased by the fact that it is also applicable for non-linear systems (high
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surface charges of particles) at distances large in comparison with Le where the
potential decreases to low values due to electrostatic screening. This observation
was the basis of the powerful linear superposition approach (LSA) discussed later
on.

A remarkably simple analytical solution of Eq. (4) can be derived for an isolated
spherical particle immersed in arbitrary electrolyte or for a two plate system.
However, an application of Eq. (4) to the two-sphere problem started already by
Vervey and Overbeek [3] is leading to complicated iterative or series solutions less
useful for practice.

Another method of finding the approximate, closed form solutions for the
two-sphere geometry was pioneered by Derjaguin [1,2] who applied the integration
procedure exploiting the solution for two flat plates. In Section 2.1 we should
discuss in some detail the known results for this geometry including the short and
large plate separation cases.

2.1. Two planar double-layers

Let us consider two charged flat plates immersed in an electrolyte solution of
arbitrary composition and infinite extension, separated by the distance /i apart.
Assume that the thickness of the plates is much larger than the screening length
Le and that there are no space charges within the plates so the electrostatic
potential remains constant there. The PB equation, Eq. (1) assumes for the planar
geometry the simpler, one-dimensional form

1 N
— —z;ey /kT (6)
21 =Z

where x = x/Le is the dimensionless distance, ¥ = ye/kT is the dimensionless
potential, I = I/n% and «; = n?/n’.
The general electrostatic boundary conditions for Eq. (6) are

dy _

E=—0'10 at x =0

d¢p -

dx=cr§ atx=nh @)

where i = h/Le and

o, = o)(4melLe/ekT)
) = o)(4mele/ekT)

are the dimensionless surface charges at both plates and o}, o) are the surface

charges at the plates.
Eq. (7), referred often to as constant charge (c.c) boundary conditions implies
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that the charge at each plate remains fixed, irrespective on their separation
distance. As discussed in Adamczyk et al. [39-41] this situation seems highly
unfavourable thermodynamically at close separations due to considerable increase
of the electrostatic potential between plates. Thus, due finite binding energy of
ions, the plate charge is expected to change upon their approach. This charge
relaxation process can proceed quite slowly as indicated in Frens and Overbeek
[49] so a full equilibration of charges is expected under experimental conditions of
the direct force measurements [43] only. When the system remains in equilibrium
at every separation then the plate charges must change upon approach in order to
meet the boundary conditions, expressed by Eq. (7). In this case this equation is
formulated in a more convenient way as

=1y at ¥ =0 (surface of the first plate)
=1 at ¥ =h (surface of the second plate) (8)

These are the so called constant potential (c.p.) boundary conditions used
commonly in the literature starting from the work of Vervey and Overbeek [3].
Sometimes the mixed case is considered when one of the plates is postulated to
maintain the c.c. conditions, whereas the second fulfills the c.p. conditions [50]. In
the case when the surface charge is due to ionizable (amphoteric) groups the
boundary conditions for the PB equation assume the form of non-linear implicit
expressions for the surface potential as a function of ionisation constants, pH, etc.
[51,52]. Since these boundary conditions are very specific and system dependent
they will not be considered in further discussion.

The above boundary conditions should be used for eliminating the constants of
integration from the general expression obtained by a twofold integration of the
PB equation, Eq. (6), i.e.

d
f v —x+C, )

1N 1/2
[—_ Z OLl-e_Z"J" + C1
i=1

Unfortunately, this integral cannot be expressed in any closed form for arbitrary
surface charge.
For a symmetric electrolyte Eq. (9) simplifies to the form

dyy’
f: =X+ C2 (10)
\/ 2coshy’ + C,
where |/ = z1.
In this case, the integral can be expressed in terms of the elliptic integral of the
first kind as done originally by Vervey and Overbeek [2] who also presented
graphical solutions of interaction energy for equally charged surfaces and gave
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approximate solutions for large surface potentials. Levine et al. [53—55] formulated
approximations valid for small and large distances in the case of an asymetric
electrolyte.

The interactions between identical plates under the c.c. and c.p. boundary
conditions were also tabulated by Honig and Mul [56], whereas Devereux and de
Bruyn [57] extensively tabulated the interactions for dissimilar plates under the c.p.
boundary condition. As pointed out by McCormak et al. [52] some results pre-
sented in these tables are charged with considerable errors, especially for extreme
values of the surface potential. In the latter work various solutions of Eq. (10) are
given in the form of the elliptic integrals and Jacobi elliptic functions for both the
c.c., c.p. and mixed boundary conditions. Graphical methods of determining the
interaction energy between plates were also presented. Due to recent progress in
numerical methods the tabulated and graphical solutions [3,52,56,57] seem less
useful than the direct solutions of the non-linear PB equation, Eq. (7), as done for
example in Adamczyk et al. [39-41] by applying the Runge Kutta method.

The only exact, analytical solutions of PB equation can be derived for the linear
model (Eq. (4)), when the dimensionless potentials (or surface charges) of both
plates remain smaller than unity. By assuming this one can easily express the force
per unit area of plates (pressure) using Eq. (2) in the form [48]

Y _ ____coshh
+ (" + ¢ |cosech?h + 240 ¢! —
+ (90" + 1Y) TRV sinhzhl

ATl = kT n®I (11)

where the upper sign denotes the c.c. model and the lower sign the c.p. model.
The interaction energy per unit area is accordingly given by

2409
sinh’

D =Le f "ATIdR = kTLen’T| F(1 — coth”) (Y + 43°) + (12)

Eq. (12) was first derived for the c.p. case by Hogg et al. [58] and will be referred
to as the HHF model. Wiese and Healy [59] and Usui [60] considered the c.c.
model, whereas Kar et al. [50] derived analogous formula for the interaction energy
in the case of the ‘mixed’ case, i.e. c.p. at one plate and c.c. at the other.

It is interesting to note that the limiting forms of Eq. (12) for short separations,
i.e. for h — 0 are

® = kT Len®l — " = 39| c.c. model

@+ )
h

—o o\
® = —kT Len®I w — Y = 99| c.p. model (13)

It can be easily deduced that the interaction energy for the c.c. model diverges to
plus infinity (repulsion) for short separations, whereas the c.p. model predicts
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diametrically different bahaviour, i.e. the interaction energy tends to minus infinity
(attraction) for the same combination of surface potentials as for the c.c. case.
However, in the case of equal potentials and the c.p. model or opposite potentials
and the c.c. model the value of ¢ remains finite, equal kT Len? I (4" + ). The
divergence between both models appearing at short separations seems highly
unphysical. It is caused by the violation of the low potential assumption. Indeed, in
order to observe the c.c. boundary conditions, the surface potential of the plates
should tend to infinity when they approach closely each other, even if at large
separations these potentials were very low. As a consequence, § > 1 for & — 0
and the linear P.B. equation is not valid. Hence, Eqs. (11) and (12) is incoherent
for the c.c. model and should not be used for short separations. This was pointed
out originally by Gregory [61] who also proposed the approximate ‘compression’
method for analysing plate interactions for the c.c. conditions. However, explicit
analytical results were only derived for equal plate charges (potentials).

The deficiency of the linear c.c. model was also demonstrated in Adamczyk et al.
[39-41] and Prieve [62] by analysing the asymptotic bahaviour of the non-linear PB
equation in the limit of small plate separation. It was shown that the force and
interaction energy of plates at small separations can be approximated in the c.c.
model by the expressions

_2l6) + &)
ATl = KT bl ———2
|z|h
216 + a3l
¢ = anf1|—|1nh (14)
zZ

As can be noticed the interaction energy remains positive at short separations
and tends to infinity at much slower rate (logarithmically) in comparison to the
linear model. It can be easily estimated that for 4 << 0.01 the differences between
the linear and non-linear models increase to an order of magnitude. It is interest-
ing to mention, however, that in the case of the c.p. boundary conditions the
asymptotic expression for the interaction energy at short separations remains the
same for the linear and non-linear models [39-41] provided that 6{) * ag.

On the other hand, for larger separations, both models reduce to the same
asymptotic form

® = kT Len?T ) e <" (15a)

As one can notice, the interaction energy between plates decreases exponentially
at large separations, the rate of decay being proportional to k = 1/Le.

It is also worthwhile noting that for equal plate potentials the expressions for the
force and interaction energy Egs. (11) and (12) become,

-h
ATl = 4kT n?I ¢’ —
(1Fe™
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—h

R e
® = 4kT Len’] " —— 15b
etV (156)

where the upper sign denotes the c.c. model. Eq. (15b) was derived originally by
Derjaguin [1].

All the discussed results are valid for metallic plates or plates of infinite
thickness when the inside electric potential remains constant. The influence of the
finite plate thickness on their interactions was studied in detail by Oshima [63-66]
both under linear and non-linear regimes. It was shown that for situations of
practical interest (aqueous solutions) the correction stemming from finite plate
thickness remains negligible.

2.2. Interactions of spheres and convex bodies

As mentioned, the analytical and numerical solutions for the plates can be
exploited for constructing approximations for the spherical and anisotropic particle
interactions. The anisotropic particle systems are of increasing interest considering
the fact that the shape of most bioparticles, e.g. bacteria, viruses, proteins deviates
significantly from the spherical shape [67]. Other examples of highly anisotropic
particles are the red blood cells, blood platelets, pigments and synthetic inorganic
colloids: gold, silver iodide, silver bromide, barium sulphate etc. [68,69]. The entire
variety of non-spherical particles has been synthesized over decades in the well-
known school of Matijevi¢ [70-75]. Also, model polymeric colloid system of
non-spherical monodisperse particles, e.g. PTFE or polystyrene latexes [76] or silica
covered bohemite [77] can now be prepared in a reproducible way.

An exact determination of interaction energy for spherical and anisotropic
particle systems and arbitrary electrolyte composition seems prohibitive due to
non-linearity of the governing PB equation and lack of appropriate orthogonal
coordinate systems, except for the case of two sphere configuration. However, by
observing that particle and protein adsorption takes usually place from concen-
trated electrolyte solutions one can treat the electrostatic interactions as short-
ranged (in comparison with particle dimensions). This enables one to avoid the
solution of the many-body problem by exploiting the additivity rule and calculating
the interparticle energy as sum of contributions stemming from particle pairs. Even
if the problem is effectively reduced to a two-particle interactions, it cannot be
solved in any exact form. Approximate methods are available only, such as the
Derjaguin summation approach exploiting the results for plates discussed next, and
the LSA approach discussed later on.

2.2.1. The Derjaguin method

According to the original Derjaguin method [1,2] the interactions of spheres
were calculated as a sum (integral) of corresponding interactions of infinitesimal
surface elements (rings) having a planar geometry. The summation was carried out
in the region close to minimum separation distance /,, by assuming a fast decay of
interactions when proceeding further from this region. Thus, the Derjaguin method
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is only valid if the radii of the spheres a, and a, are both much larger than the
double-layer thickness, i.e. for ka, and ka, > 1. It can be demonstrated that in
the Derjaguin method the force F and interaction energy ¢ of two unequal spheres
is given by the relationship

F = 2mLeGy, [ AN(RdRA = 2wG,®(h, )i
hm

b =2mLeGy [ D(R)dR (16)
h}n

where &, = kh, and G, = a, a,/(a, + a,) is the geometrical Derjaguin factor
equal to 0.5a for two equal spheres and a for plane /sphere interactions. Note that
the force is acting along the vector connecting particle centres.

By using Eqgs. (16) and (12) one can derive the explicit expressions for sphere
interaction energy in the form

kT \?
b= S(Z) Gp

—xh,

— — __  1+e
$(¢(1]z N ¢32)ln(1 R 2¢?¢§ln—1 ="

(172)

where the upper sign denotes the c.c boundary condition. Note that in contrast to
Eq. (12) the interaction energy for spheres does not depend explicitly on 1.

Eq. (17a) was first derived by Hogg et al. [58] for the c.c. model and Wiese and
Healy [59] and Usui [60] for the ¢.p. model.

It is interesting to note that in the limit /#,, — 0 Eq. (17a) becomes

kT \? 5
—) GV + ¥ Inkh,, (17b)

= F
¢ 826

where the upper sign denotes the c.c. model.
For equal sphere potential and the c.p. model Eq. (17a) simplifies to the form
derived originally by Derjaguin

kT\* _ |
b= 80(7) Gp" In(1 + e *n (18)

Egs. (17a,b) and (18) are commonly used in the literature for determining
stability criteria of colloid suspension [58] and for describing the plane /particle
interactions in particle deposition problems [58,78].

Due to recent interest in interactions of anisotropic particles mentioned above,
the Derjaguin method was generalised by White [79] and Adamczyk et al. [39-41]
to convex bodies (see Fig. 1). The first step of these calculations was determining
the minimum separation distance #,, of the two surfaces involved (cf. Fig. 1). Then,
the local Cartesian coordinate systems (x,, y,, z;) and (x,, y,, z,) are introduced
(with the colinear axes z, and z, and the x,, x, axes forming the angle ¢) and four
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hi

Fig. 1. A schematic representation of the interaction of two convex bodies in space.

principal radii of curvature R}, R,", R), R,” at these points are evaluated by
assuming that the surfaces are quadratically curved in the vicinity at P,, P,.
Finally, the interaction energy is calculated as the surface integral of the plate /plate
interactions. The generalised Derjaguin factor can be then expressed in the form
[79]

RIRI R
GD = ) (19)
(R, + R)(R’ + Ry) + (R/ — R)(Ry — R)sine

In the case of particle /plane or two coplanar particle configurations one has
¢ = 0 and Eq. (19) simplifies to the form derived by Adamczyk et al. [39-41].

Despite apparent simplicity, it is very inconvenient to apply Eq. (19) for three-di-
mensional situations except for the crossed-cylinder problem when G, can be
expressed for orientations close to 90° as

1
G, = —+/R|R, (20)
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where B is the angle formed by cylinder axes and R,, R, are the radii of the
cylinders.

The main problem when using Eq. (19) is finding the points of the minimum
separation of the two bodies involved as a function of their mutual orientation and
consequently to determine #,,. Even for such simple particle shape as spheroids,
one has to solve a high order non-linear trigonometric equations which can only be
done in an efficient way by iterative methods [80,81]. However, analytical results
can be derived, for limiting orientations of prolate and oblate spheroids as shown
in Table 1. It is interesting to observe that the ratio between the Derjaguin factors
(and hence of the interaction energy) for the parallel and perpendicular orienta-
tions of prolate spheroid (against a planar boundary) equals 1/A4s* (where As =
b/a is the shorter to longer axis ratio). This means that the electrostatic attraction
will be much higher for the parallel orientation (at the same separation distance
h,,) so the particles will tend to adsorb parallel.

In the case of electrostatic repulsion (adsorption against an electrostatic barrier)
the particles will preferably adsorb under the perpendicular orientation. The same
concerns the oblate spheroid adsorption.

It is interesting to note that in the case of spheroid/plane interactions the
Derjaguin factor can be evaluated analytically as a function of the orientation
angle o. For prolate spheroids one has

G A (21a)
D=4 cos%a + sin’a a
whereas for the oblate spheroids the solution is
As
G, = (21b)

a .
As*cos’a + sin’a

The dependence of G, /a on a determined from these equations is shown in
Fig. 2 for prolate spheroids and in Fig. 3 for oblate spheroids. In accordance with a
previous discussion, the differences between the perpendicular (« = 90°) and
parallel (o« = 0°) orientations increase when the parameter A becomes small, e.g.
for very elongated or flattened particles. Note also that the most significant
changes in G, (for particle/wall interactions) occur around « = 0° i.e. a slight
deviation from the parallel orientation will result in an abrupt change of interac-
tions.

The situation becomes more complicated in the case of particle /particle interac-
tions, occurring for example during slow aggregation, since the Derjaguin factor
will depend (for a fixed #,,) not only on two relative orientation angles but also on
the relative position of the spheroids in space. This makes it difficult to present the
results graphically in the general case. However, some limiting cases can be
visualised, e.g. for the coplanar orientation of spheroids (when the symmetry axes
are parallel to the common adsorption plane) and the crossed-orientation (one
particle above the other).
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Fig. 2. The dependence of the dimensionless Derjaguin geometrical factor G, = G, / a on the angle «
for prolate spheroid /plane interactions. (1) As = 1 (spheres); (2) As = 0.5; (3) As = 0.3; (4) As = 0.2.

In Fig. 4 the interactions between spheroids are visualised in such a way that the
length of the line normal to the spheroid surface, connecting the contour repre-
sents the Derjaguin factor at this point for a given orientation. As can be easily
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Fig. 3. Same as in Fig. 2 but for oblate spheroids.
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As=0.5

paraliel

N—

Fig. 4. Graphical representation of the spheroid/spheroid interactions (coplanar orientation); the
contours give the geometrical Derjaguin factor G, /a at the given position of the two spheroids for
parallel and perpendicular orientations, respectively.

deduced from Fig. 4, the repulsive interactions will be the smallest for the
edge-to-edge orientation.

Another limiting case of the two spheroid interactions is the crossed particle
configuration when the particle centres are above each other and the symmetry
axes form the angle B (see Fig. 5). For comparison the results for the cylinder are
shown as well. It can be observed that a considerable change in the orientation
angle B (crossed particles) is predicted to influence little the particle interactions
which quantitatively confirms the usefulness of the crossed cylinder configuration
in the direct force measurements technique [43].

It should be mentioned that the Derjaguin method and in consequence all the
data shown in Table 1 are not limited to electrostatic interactions but also to other
interactions whose range remains smaller than particle dimension (e.g. the van der
Waals interactions). However, a serious limitation of the method is that it breaks
down at larger particle/particle or particle /wall separations. This leads to an
overestimation of the interactions and to a wrong asymptotic dependence of ¢ on
the distance #,,. Recently, Bhattacharjee and Elimelech [82] have undertaken an
attempt to remove this deficiency by developing the so called surface element
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Fig. 5. The Derjaguin factor G, = G, / a for two crossed spheroids whose symmetry axes form the
angle B. (1) As = 1 (spheres); (2) As = 0.5; (3) As = 0.3; (4) As = 0.2; the broken line denotes the
results for crossed cylinders.

integration (SED procedure. Their approach is similar to the Derjaguin method,
but the integration domain extends over the entire surface of the interacting
particle, including the region opposite to the interface, where the sign of interac-
tions is assumed to change. It was demonstrated in Bhattacharjee and Elimelech
[82] that the method predicts results which are in good agreement with the
numerical solution of the linearised PB equation for ka as low as 0.3, in contrast to
the Derjaugin method which fails as expected for this ka range. Also, the method
is claimed to reflect properly the van der Waals interaction between a sphere and a
plane which is rather surprising in view of the fact that these interactions are
always attractive, whereas in the SEI method the sign of interactions is reversed for
the opposite part of the particle.

It seems that despite some sporadic success, the usefulness of every integration
method, and the SEI approach in particular for ka < 1 seems rather doubtful
because the surface elements cannot be treated as isolated entities in this case.

2.2.2. The linear superposition method

The basic assumption of the LSA method introduced originally by Bell et al. [83]
is that the solution of the PB equation for the two particle system can be
constructed as a linear superposition of the solutions for isolated particles in an
electrolyte of infinite extension. This is justified because due to electrostatic
screening, the electrostatic potential at separations larger than Le drops to very
small values and its distribution can be described by the linearised version of the
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W

Fig. 6. The linear superposition approach (LSA) for two unequal spheres.

PB, i.e. Eq. (4). As a consequence, the solution of the PB equation in this region
can be obtained by postulating the additivity of potentials and fields stemming
from the isolated particles (see Fig. 6), i.e.

=14 + U,
E=E, +E, (22)

where {s; and {5, are the solutions of the PB equation derived for isolated particles.

The LSA method can, in principle be applied for arbitrary particle shape
provided the solution of the PB for isolated particle exists. At present, however,
such solutions are known for a sphere in a simple 1-1 electrolyte only when the
potential distribution is governed by the equation

_ OA —(F—A)
yp=Y"—e (23)
r

where A = ka, a is the sphere radius, 7 = kr is the dimensionless distance from
the sphere centre and Y is the ‘effective’ surface potential which can be
approximated by Oshima et al. [84]

1
L 24 + 1 . /2
+ — ——tan
(A4 +1)°

Y = 8tanh (" /4) (24a)
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For A — o (planar interface) Eq. (24a) reduces to
Y" = 4tanh(y° /4) (24b)

It should be mentioned that Eq. (24b), in contrast to Eq. (24a), represents exact
result derived by analytical solution of the PB equation [4,5]. It has been shown in
Oshima et al. [84] that the deviation of Eq. (24a) from exact, numerical results of
Loeb et al. [85] is confined to within a few percent for 4 > 0.1 and J0 < 5.

On the other hand, Chew and Sen [86] derived the asymptotic expression for Y°
in the form

Y = 4tanh(§° /4) + 2tanh*(§° /4) /4 29

By applying the LSA method with Eq. (23) for the potential distribution, Bell et
al. [83] derived the following analytical expressions for the force and energy of
interaction for two dissimilar spheres configuration

- P 1+R IR (262)
= —e Mtm— a
d)OK 1 R2 |I'|
Al
d) — d)ofethm (26b)

where &, = sa,(kT/e)* Y'Y, R =«a, + ka, + kh,, =A, + A, +h,, is the
dimensionless distance between particle centres and r = r, — r,.

Eq. (26a) indicates that the force vector is acting along the direction of the
relative position vector T, i.e. along the line connecting the sphere centres.

On the other hand, the LSA expression for interaction energy, Eq. (26b) assumes
a simple two parametric form, analogous to the Yukawa potential used widely in
statistical mechanics [87,88]. It remains valid for arbitrary surface potentials and
the double layer thickness at distances k/,, > 1. An additional advantage of this
formula is that, unlike the HHF expression, Eq. (17a), it never diverges to infinity
in the limit /,, — 0 but approaching the constant value, which can be treated as
the energy at contact. For colloid particles, the value of the contact energy is
usually varying between 10 and 100 k7" units. Due to the simple mathematical
shape, (Egs. 26a,b) are extensively used in numerical simulations of colloid particle
adsorption problems.

It seems that the use of the LSA method is equivalent to acceptance of the
energy additivity principle, i.e. the interactions in the multiparticle systems can be
calculated as the sum of contributions stemming from particle pairs (including the
limiting case of particle /wall interactions). Indeed, Oberholtzer et al. [89] have
proven this for the three-body system consisting of two particles at a planar
interface.

It should be mentioned, however, that the LSA method and the additivity rule is
expected to break down for values of ka < 1, especially for the particle/wall
configuration when the electric field from the interface is penetrating through
adsorbed particles. Moreover, due to the large field prevailing in the gap between
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the particle and the interface the charge migration effects are likely to appear. Due
to mathematical problems in finding appropriate coordinate systems, the true
many-body problems have not been treated yet in a consistent way.

Another limitation of the LSA method is that it can only be used in the original
form for spherical particles. Due to increasing importance of non-spherical particle
interactions, an approximate method, being in principle a mutation of the LSA has
been proposed in Adamczyk and Weronski [80,81] to deal with this problem. The
essence of this model (referred to as the equivalent sphere approach, ESA) consists
of replacing the interactions of convex bodies by analogous interactions of spheres
having appropriately defined radii of curvature (see Fig. 7). As postulated in
Adamczyk and Weronski [80,81] these radii should be calculated as the geometrical
means of the principal radii of curvature evaluated at the point of minimum
separation between the bodies, i.e.

2R\R/
Rl = ’ ”
R, + R,
2R! R n
R,= ——2_ 27)
R, + R,

The advantage of the ESA consists in the fact that the known numerical and
analytical results concerning sphere interactions can directly be transferred to
non-spherical particles. Thus, the LSA results, Eq. (26b) can be generalised for
spheroidal particles to the form

¢ = b s e M =¢ ie—"h’" (28)
a(R, + R, + h,) °1+(—;eh_m
a
where ¢, = ea(kT/e)*Y Yy and
_ R,R, 2R,R/ RyR,"

G’ = =
¢ a(R,+R,) alR,R/(R,+R,") + R,R," (R, + R/)]

Fig. 7. A schematic representation of the equivalent sphere approach (ESA) for two convex particles in
space.
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_ a a(R, + R")(R, + R,")

G, = = (29)
(R, +R,)  2[R/R/ (R, +R)") + RyR, (R, + R/")]

are the two geometrical correction factors, a is the longer spheroid semiaxis.

Although Eq. (28) possesses the simple Yukawa-type form, its application in the
general case of spheroid interaction in space is not straightforward due the
necessity of a numerical evaluation of the geometrical functions 560 and 56 [80,81].
However, analogously as for the Derjaguin model, these functions can be evaluated
analytically for some limiting orientations collected in Table 1.

It is interesting to note that for the spheroid /plane interactions, due to the fact
that G, = 0, the energy is described by the equation analogous to the Derjaguin
formula, Eq. (18) (at large separations), i.e.

b = dyGle <hn (30)

where the geometrical factor 53 can be evaluated analytically for prolate spheroids
in terms of the inclination angle o as [48]

— (GD/a)3/2
G'=24s——F—— 31
¢ SGD/a + As? 1)

and G, is the Derjaguin factor given by Eq. (21a) (see Table 1).

The dependence of GY/a and Gp/a on « is plotted in Fig. 8. As can be seen,
for o approaching 90° (perpendicular orientation of prolate spheroids) both the
Derjaguin and the ESA give similar results and since G and G, /a tend to the
same limiting value equal to (b/a)*. Significant deviations occur, however, in the
limit of o — 0° (parallel orientation) when the Derjaguin model predicts G,, = a
and the ESA, G = 2b/[1 + (b/a)*]. As discussed in Adamczyk and Warszyfiski
[48] this discrepancy, increasing for b/a — 0, suggests that both models give rather
inaccurate results for very elongated particles, when As < (.2. Similar calculations
performed for the oblate spheroid are plotted in Fig. 9.

As mentioned, in the case of arbitrary orientation of spheroids, one has to use
numerical methods for evaluating the minimum separation distance and calculating
the radii of curvature [80,81]. The use of efficient iterative schemes makes this task
quite simple, so tedious simulations for spheroids become feasible [81]. Even with
this complication, the use of the ESA seems considerably more efficient than any
attempt of solving the PB equation for the anisotropic particle case.

Another approximation which can be used for modelling electrostatic interac-
tions of anisotropic particles in the case of large ka values is the effective hard
particle (EHP) concept introduced originally by Barker and Henderson [90].
According to this method, the true interaction potential between particles is
replaced by the hard wall potential. Physically this means that the interacting
particles can be treated as hard ones having the equivalent dimensions increased
over the true geometrical dimensions by the small value #* (skin), which can be
treated as the effective interaction range. It was demonstrated in Adamczyk and
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Fig. 8. Comparison of the Derjaguin and ESA (depicted by broken lines) geometrical factors for prolate

spheroid /plane interactions. (1) As = 1 (spheres); (2) 4 = 0.5; (3) As = 0.3; (4) As = 0.2.

Werofiski [81] by performing extensive Monte-Carlo type calculations that A* is
proportional to the Le parameter with the proportionality constant equal approxi-
mately 2 + 3 for colloid particles. However, this approach seems more suitable for

0]

Fig. 9. Same as in Fig. 8 but for oblate spheroids.
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characterizing the lateral particle /particle interactions than the particle /interface
interactions.

2.3. Comparison of exact and approximate results for spheres

It is not a trivial task to estimate the range of validity of the approximate
approaches discussed above because of the inherent difficulty in finding analytical
solutions of the non-linear PB equation for the sphere /sphere geometry.

As mentioned, the approximation often used for describing interactions of
spheres consists in linearisation of the PB equation which is then solved for two
equal spheres by the perturbation techniques as shown by Levine et al. [91-94],
Vervey and Overbeek [3] and Oshima et al. [95-98] for ion penetrable spheres. The
resulting analytical expressions are too cumbersome for direct use, however.
McCartney and Levine [99], developed the approximate surface dipole integration
method which was extended by Bell et al. [83] and Sader et al. [100] to a dissimilar
sphere system. The disadvantage of the analytical solutions valid for low surface
potentials is that the geometrical and electrostatic factors stemming from surface
potentials are coupled in a non-linear way. In Bhattacharjee and Elimelech [82],
the finite element method exploiting the cylindrical coordinates was used to obtain
the numerical solution of the linearised PB equation for the sphere /plane geome-
try.

Probably Hoskin [101] and Carnie et al. [102] were the first who solved the
non-linear PB equation for two equal sized spheres in an exact way using the finite
difference method. They applied the orthogonal, bispherical coordinate system
whose advantage was that the boundary conditions could be accurately expressed.
This coordinate system (with more mesh points) was subsequently used by Carnie
et al. [102] who performed calculations of interaction force for two spherical
particles in a 1-1 electrolyte. Taking into account in a rigorous manner the
electrostatic field distribution within the particles the authors proved that this
exerted a negligible effect on interaction force of particles characterised by & < 5,
e.g. polystyrene latex particles. Performing numerical calculations the authors also
determined the range of validity of the Derjaguin and the linear HHF approaches
as a function of ka and particle surface potentials. The interaction energy was not
calculated in their work.

The electrostatic potential distribution and the energy of interaction for the
dissimilar sphere system (including the important subcase of sphere interaction
with a plane) was calculated in Warszyfiski and Adamczyk [103] using also the
bispherical coordinates with the fine grid of 150 per 120 mesh points. The
calculations were performed for a 1-1 electrolyte, ka changed between 0.25 and 10
and a dimensionless surface potential reaching 4.

The distribution of the potential in the electrolyte and within a particle adsorbed
at a solid interface is shown in Fig. 10. The parameter set for which the calcula-
tions were performed (J! = —1.5, ¢y =3, & = 2.5) was chosen to mimic a
polystyrene latex particle adsorbed at silanized mica [67]. In Fig. 10a the potential
distribution is shown for ka =5 (which should correspond to a particle of



Z. Adamczyk, P. Weroniski / Adv. Colloid Interface Sci. 83 (1999) 137-226 161

micrometer size range) whereas in Fig. 10c the situation more likely for a
nanoparticle (ka = 0.25) is presented. As can be seen, the exact potential distribu-
tion within the electrolyte can well be reflected by the LSA distribution, postulat-
ing simple additivity of the potentials stemming from the particle and the interface.
It can also be seen in Fig. 10 that for microparticles the electrostatic field of the
interface penetrates little the adsorbed sphere whose surface potentials remains
negative, except for a small region at the point of contact. Qualitatively, one can
expect that adsorption of further particles, due to lateral repulsion, should occur at
the interface only, so a monolayer adsorption is expected. In contrast, for ka = 0.25
(nanoparticles) the interface electric field causes an inversion of the surface
potential of the adsorbed sphere over a considerable area. This suggests that
adsorption of new particles can occur at preadsorbed particles which can lead to
bilayer or multilayer adsorption. However, an exact description of this many-body
problem (two particles at the interface) poses insurmountable difficulties at the
present time.

A quantitative comparison of numerical results obtained in Warszynski and
Adamczyk [103] with various approximate expressions is shown in Figs. 11 and 12
where the normalised interaction energy is plotted as a function of 4 = kh,, both
for the two particle systems EW =¢ /(ea?’ /2), upper part of Figs. 11 and 12
and the particle-interface system &, = ¢/(eal$y3|/2), lower parts of these
figures. The exact numerical data obtained in Warszyfski and Adamczyk [103] were
compared with the LSA model (given by Eq. (26b)), the linear HHF model (Eq.
(17a)) both for the c.c., c.p. and the mixed case. As can be seen in Fig. 11 the
particle /particle energy interaction profile is well reflected by the LSA model
whereas the HHF model shows a definite tendency to overestimate the interactions
for the c.c. boundary conditions. Also the particle /interface energy profiles are
fairly well reflected by the LSA model with slightly smaller accuracy for the c.p.
boundary conditions. Similar conclusions can be drawn from a comparison of the
data shown in Fig. 12 collected for ka = 0.25 although much higher deviations of
the HHF model from the exact data are predicted at all distances for the c.c. model
with the LSA model performing again very well.

An interesting feature of the exact numerical results shown in Figs. 11 and 12 is
that the c.c. and c.p. model give very similar interaction energy values for the
particle /particle case (identical surface potentials), except for very short distances
kh, < 0.25. Moreover, in the c.c. model, the exact energy value remains finite in
the limit k/,, — 0 which sharply contrasts with the linear HHF model predicting a
logarithmically diverging interaction energy in the limit 4,, — 0 [cf. Eq. (17b)]. In
view of these results, the long lasting controversy in accepting the c.c. or c.p.
models seems rather immaterial.

It should be mentioned, however, that the accuracy of the LSA approximation is
strongly influenced by the surface potential asymmetry in the case of particle /wall
interactions. This is illustrated in Fig. 13 where one can see that the LSA reflects
the exact results well if the absolute values of the surface potentials of particle and
the interface do not differ too much. For the potential asymmetry exceeding 2:1
the LSA overestimates the attraction energy for distances ka < 1.
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Fig. 10. Distributions of the electrostatic potential in the electrolyte and within a colloidal particle
adsorbed at a solid /liquid interface. The solid lines denote the exact results obtained by solving the
non-linear PB equation in bispherical coordinates for [103] & = 78 (water), &, = 2.5 (polystyrene),
e /kT = 3, 4de/kT = —1.5, ka = 5, the broken lines represent the LSA results; part ‘a’ for ka = 5,
part ‘b’ for ka = 1, part ‘¢’ for ka = 0.25.

It may be concluded from the data presented in Figs. 11-13 and similar results
for the interaction force discussed in Carnie et al. [102] that significant differences
between the LSA and the exact results occur at distances smaller than ka only
where the interaction energy assumes very large absolute values either positive
(similar surface potentials) or negative (opposite surface potentials). In both cases
a relatively large uncertainty in ¢ can be tolerated. Moreover, the surface defor-
mation, roughness and charge heterogeneity effects are expected to play a decisive
role at such small separations as discussed in Section 2.4.
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Fig. 11. The dimensionless electrostatic interaction energy between two particles $pp =Q2/¢ea ngz)d)

(upper part) and for particle/interface &,; = (2/zaly) $3Dd (lower part) calculated from various
models (e /kT = 3, $e/kT = —1.5, ka = 5) [103]: — - —, exact numerical solution for the c.c. model;
— - —, exact numerical solution for the c.p. model; — O - exact numerical solution for the mixed model
(c.c. at the particle, c.p. at the surface); --- ---, the linear HHF model at c.c; — @ —, the linear HHF
model for c.p.; ——, the LSA model [analytical, Eq. (26b)]; - - - -, the LSA model (numerical); and -..-..-,
Kar et al. model [50].

2.4. Influence of surface roughness and heterogeneity

The above results are valid for idealised systems of perfectly smooth surfaces
characterised by uniform charge distribution and lack of deformations upon
approach. When dealing with real systems, e.g. colloid suspensions, these assump-
tions are likely to be violated since many complicating effects will appear such as:

1. heterogeneity of charge distribution at interacting surfaces which can be of a
microscopic scale (of chemical origin) or macroscopic, patchwise scale; also
considerable differences within particle populations are expected to appear with
respect to, e.g. average charge (zeta potential);

2. surface roughness, either due to isolated, well defined asperities of different
shape or of a statistical nature when the regular particle profile is perturbed;

3. surface deformations upon approach which seem particularly important for
polymeric colloids (latexes) characterised by a low Young modulus value; and

4. dynamic relaxation phenomena of the double layer upon contact (ageing effects)
due to ion migration along the surface or from one surface to another and
eventually due to ion transfer into the bulk; these processes are again expected
to appear for polymeric colloids having the random coil structure.
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b |

Fig. 12. Same as for Fig. 11 but for ka = 0.25.

Fig. 13. The dimensionless particle /interface energy <_1>p,- determined for e = 78, ¢, = 2.5, ka = 1 and
Ll_;? e/kT =3 [103]. The full symbols denote the exact numerical solutions for the c.c. model for

b =
V) =

LSA.

—3 (squares); §) = —1.5 (circles); §J = —1 (triangles); 9 = —0.75 (reversed triangles); and
—0.6 (diamonds). Dotted curves show the numerical LSA model and dashed curves the analytical
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Despite the great practical significance of these dynamic phenomena surprisingly
little effort has been devoted to quantify them by developing theoretical ap-
proaches. The effect of microscopic non-uniformity of charge distribution (discrete
charge effect) was studied by Levine [37]. A similar problem was considered by
Richmond [104,105] where the interaction energy between parallel plates with a
discrete charge distribution forming two-dimensional lattices was studied using the
linearised PB equation. It was found that the discrete charges generated a larger
interaction potential in comparison with uniformly charged surfaces.

The effect of heterogeneity of charge distribution on particle /surface interac-
tions was studied by Song et al. [106] by considering two simple models of a
macroscopic, patchwise heterogeneity and the microscopic model when the charge
distribution was described by the Gaussian probability distribution. The interac-
tions were simply calculated from the usual expressions stemming from the DLVO
theory by introducing the local values of the surface potential. A similar approach
was used by Adamczyk [78] by postulating that the surface charge (characterised by
zeta potential) of particles is described by a Gaussian distribution. It was shown in
both works that the initial particle flux under the barrier transport conditions will
be increased by orders of magnitude when the charge distribution heterogeneity
appears.

The effect of geometrical surface roughness was studied in more detail. Krupp
[107] was probably the first who qualitatively consider the effect of a hemispherical
asperity on the adhesion force of a smooth colloid particle. It was concluded that
the attractive electrostatic interactions will be decreased to a lesser extent than the
dispersion forces so the net adhesion force should be determined by the elec-
trostatic component. A similar model was used by Adamczyk [78] to determine
graphically the maximum size of a rough particle which can adhere to an interface
under hydrodynamic shearing forces. Elimelech and Melia [108] used an analogous
model for simulating the interaction of a smooth particle with a flat plate
containing a single hemispherical asperity. The electrostatic interaction energy was
calculated using the Derjaguin method as a sum of particle /smooth wall and
particle /asperity contributions.

Czarnecki [109] and Czarnecki and Warszyfiski [110] used the additivity principle
for modelling the interaction of a smooth sphere with a heterogeneous (rough)
planar surface. The rough surface was generated by distributing at random over a
smooth surface a number of small spherical particles having various size and
charge distribution governed by the Gaussian law. Considerable differences in the
interaction energy of the sphere were predicted at various spots of the interface
which could explain the appearance of specific tangential interactions in particle
deposition processes.

The energy additivity rule was also exploited by Herman and Papadopolous
[111,112] who determined the effect of conical and hemispherical asperities on the
van der Waals and electrostatic interaction between flat plates using the LSA
approach combined with the Derjaguin summation method. It was demonstrated
that due to asperities, the repulsive interaction energy was increased over the
smooth plate case, especially for large ka values. This approach was generalised to
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the rough colloid particle /smooth surface case [113,114]. The following formula for
the electrostatic interaction energy based on the LSA /Dejaguin approach was
derived

d) = d)(](l — ﬁ)e"‘hm + d)'oee_"(hm_ﬂ.\-) (32)

where &, = sa (kT/e)*Y'Yy as previously defined, &, = ea/ka NkT/e)?
Y'Y, 06 = wa?N is the surface coverage of the asperities, a, is the asperity radius
and N is their surface concentration, Y',Y,,Y." and are the effective surface
potentials of the interface, particle and asperity, respectively.

This model is applicable for high electrolyte concentration when ka, > 1 and
for low coverages 6 when the number of asperities within the contact area remains
low so the uncovered surface areas can be treated as isolated patches.

It can be deduced from Eq. (32) that due to asperities the repulsive interaction
energy is much higher (at the same distance between the smooth surface and the
plate) than in the case of smooth objects. On the other hand, when defining #,, as
the distance between the asperity surface and the smooth boundary (which has a
more natural physical interpretation in the case of attractive interactions leading to
adsorption and adhesion) one can deduce from Eq. (32) that the absolute value of
¢ should become much smaller than for bare particles at the same separation.

In an attempt to develop improved modes, Kostaglou and Karabelas [115]
treated the problem of electrostatic interactions of two infinite surfaces exhibiting
periodic (sinusoidal) surface roughness. The linear PB equation was applied which
was then solved by the perturbation, boundary collocation, and boundary integral
methods. It has been found that the interaction energy of rough surfaces is at all
separations larger than that for smooth surfaces. However, it was claimed that the
theory predicts a decrease in the electrostatic interaction energy upon contact.
Obviously, further studies using more realistic surface roughness distributions (e.g.
of a stochastic nature) are needed to resolve this discrepancy.

Apparently, the effect of surface deformations has not been treated in the
literature. One may suppose that in the case of repulsive interactions, ¢ is
expected to increase over the values for perfectly rigid bodies as a result of surface
deformations. This would be so because the radius of curvature around the
minimum separation area increases due to a surface flattening effect. On the other
hand, in the case of attraction, the absolute value of the interaction energy will
decrease due to a decrease in the curvature radius. As discussed by Krupp [107],
however, upon making a physical contact, the adhesion energy will likely be larger
due to flattening of the surfaces involved. In any case, due to unequivocal
definition of the separation distance in the case of deformable bodies, producing a
coherent theory of electrostatic interactions seems difficult.

3. The dispersion forces and the energy profiles

Since the dispersion (van der Waals) interactions have been treated extensively
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in excellent monographs and reviews [116—118], in our paper we shall invoke some
selected results only, pertained to particle adsorption problems.
Generally, there exist two methods of calculating the dispersion interactions:

1. the microscopic approach exploiting the energy additivity principle to derive
solutions for more complex geometries from known solutions for atoms and
molecules [119,120]; and

2. the macroscopic approach [121] treating the interacting body as a continuum
and exploiting the imaginary part of the dielectric constant expressed as a
function of the radiation frequency for determining the material constants
characterizing the magnitude of the interactions [107].

The shortcoming of the microscopic approach is that in condensed phases the
atoms and molecules may undergo structural changes so the additivity principle is
violated and the interaction constant known for isolated species is no longer valid.
On the other hand, a great advantage of this approach treated exclusively in our
review, is that analytical formulae can be derived for complicated geometries of the
interacting particles, including the case of rough surfaces. In contrast, it is very
difficult to go with the macroscopic approach beyond the case of two half-space
interactions.

The interaction of two different atoms across a vacuum is described by the
expression, first derived by Lodon [122]

3 0w, 1 Bio
o= mhey T e T e (33)

where w,, w, are the characteristic oscillation frequencies, o, o, are the polaris-
abilities of the atoms, 3, is the London constant and r the distance between the
atom centres.

Due to omission of the retardation effect, Eq. (33) is only valid for distances
between atoms shorter than the characteristic wavelength A, being of the order
10-15 nm. It was shown by Schenkel and Kitchener [123] that by considering the
retardation effect the interaction energy of atoms is given by the approximate
expression valid for 2mwr/\ > 0.5

By, | 2450 2170 0.59N°

- +
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b, = (34)

At larger distances the leading term obviously dominates and one recovers the
formula derived originally by Casimir and Polder [124].

The force of interactions between atoms can be directly obtained from the above
formulae by a simple differentiation with respect to r.

Using Egs. (33) and (34) one can derive the expressions for macroscopic bodies
of arbitrary shape by calculating the volume integral
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¢ = /L f $.q.9, dv, do, (35)

1 U2

where ¢q,, g, are the number density of atoms in the two bodies involved, and v,,
v, are the volumes of the bodies.

Applying Eq. (35) with ¢, given by Eq. (33) to the two halfspaces case one
obtains the expression for the unretarded interaction energy per unit area in the
form

Ap

=T (36)

where A, = m?B,,q,9, is the Hamaker constant.
For the retarded case using Eq. (34) (with the leading term only) one obtains
[113,114]

Ay | 2450 217N 0.59\°
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Because the dispersion interactions are usually of much shorter range than
colloid particle dimensions one can use Egs. (36) and (37) in conjuncture with the
generalised Derjaguin method to derive the expressions for ¢ in the case of
arbitrary convex bodies (whose radius of curvature is larger than approx. 10 nm). In
this way one obtains

A12

b= -Gy = (38)

where G, is the generalised Derjaguin factor given by Eq. (19) and shown in Table
1 for limiting configurations of spheroids.

On the other hand, the exact result which can be derived by evaluating the
volume integral, Eq. (35) for two spherical particles in the non-retarded case is
[117]

Z 2a,a, 2a,a,
=-— +
= T\ nh t 20, 7 2a) T G+ 2a)(h T 24y
h,(h, + 2a, +2a,)
+1 39
Vb, + 2a)(h, + 2a,) (39)
In the case of retarded interactions the Derjaguin expression reads
G Ay, | 2.450 217\ 0.59\° 40)
= - - +
¢ Pan? | 60 360mh, — 1680m2h2,
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For this geometry the exact results are too cumbersome and are not presented
here.

For the sphere /plane interactions the exact results can be derived by substitut-
ing a, = a and letting a, — . In this way one obtains for the non-retarded and
retarded interactions, respectively [109]

Ap | a a | h,,
=-——|—+ +
¢ 6 |n,  2a+h, 2a+h,
A [240] Gyt 30
= —_——— — J— _|_ -
YT e | T G ey

720w
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_|_
h,, (h, +2a)

(41)
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Since the expression for the retarded interactions are rather cumbersome for
direct use, Suzuki [125] derived an approximate equation having the simpler form

A a

b=-— (42)
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1+ 11.11 A
+ 11.11—
h

m

Obviously, the Derjaguin model, Egs. (38) and (40) still holds for the
sphere /plane geometry with G|, = a.

The corresponding expressions for the force of interaction can easily be derived
from the above formulae by a simple differentiation with respect to the distance
h,,.

The above presented expressions are strictly valid for atom interactions in a
vacuum only. As shown in [120], however, the analogous interactions across a
continuous medium can be characterised by the same functional dependencies with
the ‘composite’ Hamaker constant, 4,,, denoting interactions between particles of
material 1 interacting with particles of material 2 across the intervening medium 0.
Obviously, when the medium 0 is a liquid phase, its composition may change at the
liquid /solid boundaries due to, e.g. electrolyte concentration changes. This is
expected to influence to some extent the value of the Hamaker constant. Thus, in
the general case, the electrostatic and dispersion interactions are coupled in a
complex, non-linear way which violates the basic assumption of the DLVO theory.
Due to the lack of appropriate theories we should accept the hypothesis that this
coupling is not too significant ([117], p. 224).
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In contrast to double-layer interactions, the case of dispersion interaction of
rough particles has been well treated in the literature [109,110,126,127]. Although
exact results for arbitrary statistical distribution of microroughness were found to
be rather complicated [126], Czarnecki and Dabro$ [127] and Czarnecki [109] have
derived a simple interpolating function for ¢, valid both for sphere /sphere and
sphere /plane interactions

h

o, = @(T) 43)

¢, is the energy for the smooth particle interface, the distance #,, is now measured
between the two outermost points at the particle surfaces, S = h,, + (b, + b,)/2
and b,,b, is the thickness of the rough layer at particles 1 and 2, respectively and ¢
is the exponent, close to one for the unretarded case [109] and 1.5 for the retarded
case [127]. Thus, in the limit &,  — 0, Eq. (43) reduces to the simple form (for
unretarded interactions)

b, =b,H (44)

where H = 2h,,/(b, + b,) is the scaled distance between particle surfaces.

It can be easily deduced from Eq. (43) that, in accordance with intuition, the
dispersion interactions between rough bodies are substantially reduced at all
separations in comparison with smooth particles.

3.1. Superposition of interactions and the energy profiles

Since for most known cases the Hamaker constant assumes a positive value (with
the exception for liquid helium [118]) one can deduce from Egs. (37)—(44) that the
dispersion contribution to the interaction energy is negative (attraction) at all
interparticle separations. Moreover, due to insensitivity of the Hamaker constant
on materiel properties (except for metals it is usually confined within the range
5Xx 107" + 2 x 1071 ergs), the range of dispersion interactions is fairly fixed,
equal to 10-20 nm.

In contrast, the electrostatic interactions can be either positive or negative
depending on surface potentials and separation distance. Additionally, their range
can be varied between broad limits (1-1000 nm) by simply changing the ionic
strength of electrolyte solutions. As a result, the superposition of the dispersion
and electrostatic interaction may lead to complicated energy profiles discussed first
by Vervey and Overbeek [3] and classified by Rajagopalan and Kim [128,129].

Of most pertainence to the particle adsorption problem is the energy profile of
type I shown in Fig. 14a when the interaction energy decreases monotonically when
h,, — 0 (the bulk energy level is assumed conveniently to be zero). This profile
appears in systems when particle and interface bear opposite surface charges. In
order to simplify the mathematical analysis of particle transport phenomena this
energy profile is often idealised by introducing the perfect sink (PS) model, as done
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originally by Smoluchowski [130] in his fast coagulation theory. According to this
approach, the interaction energy remains zero up to a small distance d,, where it
becomes minus infinity (see Fig. 14a).

Obviously, both the energy profile of type I and the PS model should be treated
as an idealisation of any real situation because at very small separations the
interaction energy must become positive due to the Born repulsion preventing
particle /wall penetration. In the DLVO theory, these repulsive interactions were
not considered. Even at present no quantitative theory of these interactions for
macroscopic objects has been developed. Assuming that the repulsive part of the
potential is described for atoms and molecules by the 6—12 power law one may
expect that for the particle /wall interactions ¢ ~ r~7. These interactions seem,
therefore, very short ranged, probably not exceeding 0.5-1 nm.

In any case, the appearance of the repulsive interactions fixes the minimum
value of the interaction energy which remains finite in accordance with intuition.
This minimum energy value is often referred to as the primary minimum denoted
by ¢,, and the distance where it appears as 3, (see Fig. 14a). One may expect that
3, is of the order of the range of the Born repulsive forces, i.e. 0.5-1 nm.
However, the extension of the region where the interaction energy assumes a
negative value can be much larger, comparable with the Debye screening length,
i.e. approximately 100 nm for a 107> M electrolyte solution.

Since for a type I profile the energy assumes large negative values around 3,,,
the probability of finding a colloid particle within this region will be considerably
larger than the uniform probability in the bulk of the suspension. This will result in
particle accumulation around 8§,, leading to a particle concentration increase.
Under equilibrium, the resulting particle concentration profiles can be described
by the Boltzmannian distribution, i.e. n = n, e~ */*T as shown in the upper part of
Fig. 14a. It should be remembered, however, that particle accumulation can
proceed to some limiting value when the volume exclusion effects start to play the
decisive role as discussed later.

Therefore, the existence of the energy minimum would physically explain adsorp-
tion of colloid particles, at least under static, no flow, conditions. For a flowing
colloid system, as is the case for most practical applications, the situation becomes
conceptually more complicated because neither the classical DLVO, nor the theory
with inclusion of Born repulsion would explain particle immobilisation under
vigorous shearing forces [131-133]. Thus, the particles accumulated at the interface
would easily be removed by the tangential fluid flow. One has to accept somehow
ad hoc the appearance of strong tangential interactions most probably due to
short-ranged geometrical and charge heterogeneities [131-133]. It is difficult to
estimate the magnitude of the local energy sinks arising due to the tangential
interactions although it can be predicted that their depth will be a fraction of &,,.
As discussed by Adamczyk [78] these tangential interactions exert a rather minor
influence on adsorption kinetics of colloid particles. They are expected, however, to
influence considerably the maximum size of particle attached to the surface under
given flow shear rate.
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Fig. 14. Part ‘a’ the Type I energy profile (no energy barrier) and the corresponding particle concentra-
tion profile at equilibrium (schematic view). Part ‘b’ the Type II energy profile (energy barrier) and the
corresponding particle concentration profile at equilibrium.
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To simplify our considerations we assume in due course that these interactions
are strong enough to keep adsorbed particles fixed at a given position (localised
adsorption postulate).

Since for the type I energy profile the attractive specific forces appear over
distances comparable with particle dimensions (for low electrolyte concentration) it
can be deduced that particle transport from flowing systems will be significantly
accelerated as discussed quantitatively later on.

In the case when the interface and particle are likely charged, the energy profile
of type II is likely to appear (see Fig. 14b). The characteristic feature of the profile
is the appearance of a maximum energy barrier of height ¢, at the distance §,.
The corresponding Boltzmannian distribution under equilibrium is presented in
the upper part of Fig. 14b. This energy profile corresponds to the activated
transport conditions in the chemical kinetics. In the case of two colloid particles,
this profile would correspond to the slow coagulation conditions. Obviously, the
height of the barrier is very sensitive to the electrolyte concentration and composi-
tion (presence of polyvalent ions). Much effort in the literature was devoted to
derive, starting from the DLVO theory, functional dependencies (known empiri-
cally as the Schultz—Hardy rule ([117] p. 421) connecting the critical coagulation
concentration with the Hamaker constant, electrolyte concentration, valence and
the size of the particles [3].

On the other hand, when the barrier height assumes large values (as is the case
for lower electrolyte concentration) the system is kinetically frozen, in the sense
that particle aggregation is proceeding at much slower rate than the usual observa-
tion time. In particle adsorption experiments the existence of an energy barrier
would also reduce the particle adsorption rate considerably which will be inaccessi-
ble for accurate measurements. Therefore, a compromise is usually sought in this
kind of experiment characterised by a negligible aggregation rate of the suspension
and measurable rate of particle adsorption. It should also be expected that due to
large transport resistance due to barrier, the bulk transport conditions will be less
important in this case.

For low electrolyte concentration and large particles (micrometer size range) a
situation may arise when the so called secondary minimum appears at the distance
3, much larger than 3,. Obviously, this minimum is more shallow than the
primary minimum due to smaller dispersion energy contribution at this distance.
This type of energy profile will be referred to as IIa. Fundamentally, there is not
much difference in the II and Ila energy profiles. In the latter case, additional
accumulation of particles around 3,,, is expected which could influence particle
adsorption kinetics. However, due to flow the concentration peak within this region
does not become significant [131,132].

As this fragmentary analysis suggests it is generally much more efficient to
analyse the influence of the energy profile on particle adsorption phenomena than
to analyse the influence of numerous physicochemical parameters influencing ¢,,,
8,,, Oym» O, This approach will be generally adopted in later parts of our work
dealing with quantitative analysis of adsorption kinetics.
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4. Role of specific interactions in particle deposition phenomena.

The specific interactions discussed in previous sections are expected to signifi-
cantly influence colloid particle deposition at solid /liquid interfaces not only by
regulating the transport rate through the diffusion boundary layer but also by
controlling the adhesion force necessary for localisation of particles. Depending on
the magnitude of the specific interactions one can distinguish the two main
categories of particle deposition regimes [67]:

(1) the barrierless deposition when the particle/interface specific interaction
profile is of type I and that of particle /particle of type 1I;

(ii) the barrier-controlled deposition when both energy profiles are of type II with
the barrier for particle deposition significantly lower that for particle aggrega-
tion.

Note that in both cases the suspension is stable in a kinetic sense only, which
means that a noticeable aggregation may occur within the timescale of particle
deposition experiments, in the case of higher electrolyte concentration.

Whereas in case (i) the system is usually well behaved (in the sense that surface
heterogeneities and natural distribution of particle charge density exert little effect
on particle deposition kinetics), the deposition regime of type (ii) is usually
ill-defined. This means that deposition rate and mechanism is very sensitive to the
specific details of surface topology, e.g. presence of isolated patches or surface
roughness, characterised by different surface properties. Also the particles which
have favourable surface properties will selectively be deposited from a suspension
characterised by a spread of, e.g. surface charge.

Due to these complications, the barrier-controlled deposition regime (i) has
sporadically been studied in comparison with regime (i), treated extensively in the
literature both theoretically and experimentally (see the reviews [48,67,78,128,133)).

Even for the barrierless deposition, however, the linear transport conditions are
relatively short-lasting, especially when concentrate suspensions are involved. The
deviations from linearity stem from the presence of particles accumulated at the
interface which disturb locally fluid flow and exert additional forces on adsorbing
(flowing) particles. This leads to surface blocking effects (called also surface
exclusion effects) which are responsible for the reduction in particle deposition
rate at higher coverage. As pointed out by Adamczyk [67] a rigorous theoretical
analysis of these many-body phenomena seems difficult without introducing rather
drastic simplifications concerning the hydrodynamic and electrostatic interactions.
In the literature, these surface blocking effects are introduced somehow ad hoc,
usually in the form of flux correction function B(6) (where 6 = NS, is the
fractional surface coverage, N is the surface concentration and S, is the character-
istic particle cross-section area) which depends solely on the surface coverage of
deposited particles. B(6) is traditionally referred to as the blocking function,
whereas in the physical literature the more accurate notion of available surface
function (ASF) is used [134,135].

The most obvious, but rather ill founded for continuous surfaces, seems the
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Langmuir model based on the assumption that B(6) = 1 — 6/6,, where 6, is the
‘saturation’ coverage to be determined empirically. With this function in hand the
actual adsorption flux j is expressed as

J=JyB(6) (45)

where j, is the initial particle flux (if it can be defined).

The definition of the blocking function B(6), inherent to Langmuir and other
models as a ‘surface’ quantity, independent on the distance from the interface and
particle distribution seems conceptually wrong as pointed out [134,135]. The
deficiency of this model becomes apparent when realizing that at the same
coverage (e.g. m/8 = 0.39) the adsorbed particles can either block the entire
surface, when forming a regular layer, or approximately 0.43 of the available
surface only, when forming a two-dimensional hexagonal crystalline phase.

To avoid these limitations, we shall accept in our work a more general approach
in which the effect of adsorbed particles is treated as additional transport resis-
tance which depends not only on particle coverage but also on the structure of the
adsorbed layer. Physically this means that due to the presence of deposited
particles an energy barrier is formed (hereafter referred to as the steric barrier)
whose magnitude is growing with particle coverage. Analogously as for the elec-
trostatic interactions, this barrier has some spatial extension (width) which is close
to particle diameter. The repulsive interactions due to this barrier are incorporated
in an exact way in the particle continuity (mass conservation) equation as discussed
next.

4.1. The continuity equation

Our considerations presented hereafter are in principle valid for spherical
particles only since due to insurmountable mathematical difficulties no exact
solutions of the continuity equation for anisotropic particles have been derived.
However, the results obtained for spheres may be exploited as useful reference
system for other particle shapes, especially when the steric barrier for these
particles is estimated.

Assuming that the colloid particle suspension can be treated as a stable, well
defined phase one can write down the expression for the mass flux vector for
quiescent (no flow) systems in the usual form

j=-M-Vin=-M-(Vp + Vd)n = —D - (Vu/kT + Vo /kT)n (46)

where M is the mobility matrix, fu the total potential of a particle, p the chemical
part of the potential, ¢ the external force potential, 7 is the local value of particle
concentration and D = kTM the diffusion matrix.

It should be mentioned that the potential ¢ contains the contribution stemming
from external sources, e.g. gravity, magnetic fields, electrostatic interactions due to
the interface, etc., whereas the specific interactions between particles are con-
tained in the chemical part of the potential, . Hence, by formulating Eq. (46) one
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assumes implicitly that there is no coupling between external and chemical interac-
tions.

For dilute systems, as is usually the case in the bulk of the suspension during
deposition experiments, the chemical potential simply becomes w = p, + k7 In n
(where ., is some reference value of the potential). This case would correspond to
the ideal bulk behaviour of the suspension. In the general case, however, e.g. in the
regions where local particle concentration increases, the deviations from the
ideality may become significant.

It is not conceptually simple to generalize Eq. (46) to flowing systems due to
appearance of inertia forces for high Re flows (where Re is the Reynolds number)
and the inherent non-potential nature of viscous flows. It have been postulated,
however, that for colloid particles the local flows are practically inertialess and of a
quasistatic nature [132]. Assuming additionally that there is no coupling between
hydrodynamic and specific interactions one can formulate the flux expression in
the form

j=-D-(Vu/kT + Vo/kT)n + V,n 47)

where V, = M-F, + M, - T, is the particle velocity vector due to the hydrody-
namic force F, and torque T,, and M, is the rotational mobility matrix. It should
be mentioned that by formulating Eq. (47) all the hydrodynamic particle /particle
interactions were neglected as well as all flow disturbances due to the presence of
particles.

For a suspension exhibiting an ideal bulk behaviour by neglecting specific and
external forces, and assuming that particle velocity coincides with the fluid velocity
(as is the case far from boundary surfaces) one can simplify Eq. (47) to the form

Jj=-D¥Vn+V,n (48)

where D, is the diffusion coefficient (position-independent scalar quantity) and V
is the fluid velocity vector fulfilling the continuity equation V-V = 0.

Eq. (48), being the starting point of the convective diffusion theory [136] is
usually referred to as the Smoluchowski—Levich (SL) approximation.

Let us now consider transport of colloid particles in the vicinity of an interface.
Assume that after approaching the interface close enough the particles become
immobilised due to the presence of above mentioned tangential interactions whose
range is infinitesimal in comparison with particle dimension. Thus, upon contact,
the particles do not move along the surface although they can occasionally escape
from the primary minimum region. Using the flux expression, Eq. (47), one can
formulate the non-stationary continuity equation as

on
- = ~V-j=V-[(DVu/kT + D-Vé/kT — V,)n] (49)
where ¢ is the time.

The mass conservation equation for the immobile phase can be formulated by
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observing that the increase in the surface concentration of the immobilised
particles N is due to the normal component of particle flux at the interface j
(more correctly at the surface surrounding the boundary at the distance which can
be identified with the primary minimum distance 3,,), i.e.

dN R
? = J(Bm) ‘n = kan(Sm) - de (50)

where j(3,,) is the local flux vector given by the expression
i®,) = (D - Vp/kT + D -V /kT — V)nls, (51

where f is the unit normal pointing outwards from the interface, k, is the
adsorption rate constant characterizing the transfer rate from mobile to im-
mobilised phase and k, is the desorption rate constant describing particle escape
rate from the immobilised phase.

Using Egs. (50) and (51) one can formulate the general kinetic boundary
condition for the bulk phase in the form

k,n(3,) —k,N =[D-Vu/kT + D-Vo/kT — Vn]-f at,, (52)

Eq. (52) indicates that the bulk and surface continuity equations are coupled and
cannot be solved independently. However, when one assumes the perfect sink
behaviour, i.e. when the transfer rate from mobile into immobile phase k,
becomes infinite (due to presence of infinite energy sink) and k, = 0, then the
boundary condition for the bulk phase assume the particularly simple form

n=0 atd, (53)

This type of boundary condition has been used in the Smoluchowski—Levich
theory in conjuncture with the bulk transport equation derived by exploiting the
flux expression, Eq. (48), i.e.

on
Frie DN*n —V-Vn (54)

Later on, the PS boundary conditions, Eq. (53) have extensively been exploited in
numerical calculations of particle deposition rate at various surfaces [67,133].
The boundary value problem expressed by the mass conservation equations, Egs.

(49) and (50) and the boundary condition, Eq. (52) is complemented by the bulk
boundary condition which usually assumes the form

n — n, atlarge distances from the interface (55a)

On the other hand, for adsorption from a finite volume the symmetry boundary
conditions are appropriate [137]
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Vn =0 at the symmetry plane (55b)

It should be remembered that due to the presence of adsorbed particles, the
chemical potential entering Eq. (49) is modified in the vicinity of the interface. One
can postulate that the modified potential can be expressed as

W=y +kTInfn = wV + kTlnn + kTInf (56)

where f is the activity coefficient which is supposed to depend not only on the
distribution and surface concentration of deposited particles but also on
particle /particle interactions. Note also that f is a spatial variable having the

property
f=1at distance > 2a + &* (57)

where 8* is the range of particle /particle interactions.

Since the coefficient f as defined by Eq. (56) is dependant on particle configura-
tion which in turn is determined by the particle transport mechanism in the bulk
(flow, diffusion, external force), both the bulk and surface continuity equations
become coupled in a complicated, non-linear way which prohibits any general
solution of the boundary value problem expressed by Egs. (52)—(54). Therefore,
simplified models are usually considered like the above SL approximation (Egs.
(53) and (54)) or the linear model assuming an ideal behaviour in the bulk and
neglecting the influence of deposited particles, when f = 1. In the latter case the
non-stationary bulk transport equation becomes

on
— = V[P Vr+ (D-Vo/kT =V, )n] (58a)

with the PS boundary conditions
n=0atj, (58b)

n = n, far from the interface

A particularly attractive from the theoretical viewpoint situation arises when the
normal component of the flow and the external force are independent of coordi-
nates tangential to the interface. Then Eq. (58a) can be converted into the simple
one-dimensional form [131-133]

A 7S] L ZER | S (59)
— = — + +
ot~ oh on " an Q
where £ is the separation between particle and the interface and Q(h) = —nV -V,
-V, -Vn.
P

The advantage of Eq. (59) (being from a mathematical viewpoint a parabolic
partial differential equation) is that it can exactly be solved by standard numerical
techniques, e.g. by the finite-difference Crank—Nicholson scheme [131,132] under
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transient (non-stationary) conditions. The surfaces for which Eq. (59) is fulfilled
are usually referred to in the literature as the uniformly accessible surfaces
[67,133].

Eq. (59) can further be simplified when assuming that the steady-state conditions
are established. As demonstrated in Adamczyk [138], this is a valid assumption for
a broad class of practically important situations when the duration of the transient
regimes is of the order of seconds. One of a few exceptions is particle sedimenta-
tion against an energy barrier [139] or particle accumulation at a secondary
minimum of a considerable depth [131,132]. When the steady-state is postulated,
Eq. (59) simplifies to the form

dn  do/kT
— +
dh dh

i[p(h)(

- n)] Lo =0 (60)

This is an ordinary one-dimensional differential equation, which can be effi-
ciently solved by the standard numerical method (e.g. the Runge—Kutta method).

A number of important solutions to Egs. (59) and (60) have been derived in the
literature for barrier-less and barrier-controlled transport conditions. Since these
solutions are also important for many practical applications we shall briefly discuss
some representative results in Section 4.1.1.

4.1.1. Limiting solutions for the perfect sink model

The solutions of quite general validity can be derived analytically for the
Smoluchowski—Levich approximation. Physically, this model works best for suspen-
sions of small colloid particles and not too vigorous flows. Then, the diffusion
boundary-layer thickness remains much larger than particle dimension so the effect
of specific and external force fields become negligible as well as the diffusion
coefficient changes due to the presence of interfaces. The simplest situation of this
kind arises for a larger sphere of radius R (collector) placed in an otherwise
quiescent suspension of particles having the radius a. In this case the SL equation,
Eq. (52) can be solved analytically giving the expression for the particle flux in the
form [130]

D 1 1
= ( n, (61)

Dy L
T= R\ Var T 1+ 4s

where D, = D, + D, (D,, D, are the diffusion coefficients of the collector and
the colloid particle, respectively), and As = a/R, v = tD,, /R>.

It should be mentioned that we have accepted hereafter the convection of
expressing fluxes to the interface as positive quantities (adsorption rates).

The first term on the r.h.s. of Eq. (61) describes the transient particle flux which
becomes negligible when T > 1. Then, after this transition time, the stationary j,
flux becomes
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D, 1

. 62
R 1+As™ (62)

Jo =

The number of particles deposited on the surface of larger sphere per unit time
is according Eq. (62) equal to

N, =4m(a + R)j, = 4w(D, + D,)(a + R)n, (63)

Eq. (63) was first derived by Smoluchowski [130] in his fast coagulation theory.

In the case when As — 0 (colloid particle size much smaller than collector
dimension), the stationary flux becomes D.n,/R.

It should be remembered, however, that in this case, the collector size should be
small enough so the inequality D.t/R?> 1 is fulfilled. Otherwise, for large
collector radius, the first term on the r.h.s. of Eq. (61) dominates and particle flux
remains non-stationary for t < R?/D,,, i.e.

. D, D,
mt Tt

Such situation occurs, e.g. for a planar interface.

Eq. (61) has an important meaning because it represents the only analytical
solution of the SL equation under transient conditions when no flow occurs. For
flowing systems, analytical solutions are only feasible under stationary conditions.
Thus, in the case of a sphere placed in uniform suspension stream ¥, (or the
analogous case of a sphere sedimentation with the steady velocity V, throughout a
quiescent suspension of infinite extension) particle flux in the vicinity of the flow
symmetry line is given by the expression [67]

I

D2/3V1/3

jO = OSSW}’% (65)

Note, that this stationary value of the flux (often referred to as the limiting or
initial flux) is proportional to D2/® rather than D, as was the case for no flow
conditions. It is also interesting to observe that j, is rather insensitive to the fluid
velocity V.

A formula analogous to Eq. (65) with the proportionality coefficient 0.98 was
derived for the cylinder placed in the uniform [67]. Similarly, for the circular
impinging jet cells one formulated the expressions [140]

2/31/1/3

m

Jo = 0788 — 5 —

ny (66)
where @ is the dimensionless flow intensity function of Re = V,, R/v (V,, is the
mean linear velocity in the cell, R is the capillary radius, v is the fluid kinematic
viscosity). For Re > 10, @ can well be approximated by C Re'/? where C is the
dimensionless constant of the order of unity [141,142].
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For the slot impinging jet (SIJ) the expression for j, is analogical to Eq. (66)

[143] with the @ function determined numerically in Adamczyk et al. [144]. For
Re < 40 it can be approximated by the interpolating polynomial

@ = 0.424 + 0.822Re + 0.0013Re? (67a)

For Re > 10 one has a simpler expression for a[144]

a=092Re? - 1.71 (67b)

Analytical expression for j, was derived by Levich in the case of the rotating disc
[136]

o!/?

p1/6

jo = 0.616D2/3 n, (68)

where o is the disc angular velocity.

It should be mentioned that in this case the limiting flux j, is uniform over the
entire surface, whereas for all previous cases the flux remained constant within a
small region in the vicinity of the symmetry line. This can be deduced from the
exact expressions derived for a sphere [136] or cylinder [145] placed in an uniform
flow, i.e.

AI/3D2/3V1/3
Jo :fs(ﬁ)fRTﬁmnb (69)

where f,(3) = 0.78sind /(¥ — 1/2sin29)'/? for the sphere,

Vsind
Y 1/3
( f Vsing dg)
0

£.(§) =085

for the cylinder, ¥ is the angular coordinate measured from the flow symmetry line
or plane (for cylinder), and A, is the flow model parameter.

It was shown in Adamczyk et al. [144] by performing numerical calculations that
a quite analogous dependence of j, on the tangential coordinate is expected for
the SIJ cell.

As can be deduced from Eq. (69) and the graph shown in Adamczyk et al. [67]
the flux does not change appreciably for angles smaller than 90° i.e. in the front
part of the collector. The flux uniformity is markedly more uniform for the
cylindrical collector [67].

A different situation occurs for other non-uniformly accessible surfaces like the
parallel-plate or cylindrical channel used widely for colloid deposition studies. For
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these collectors the flux tends to infinity at the entrance part, according to the
analytical expressions derived in [146]

2/3771/3
D23y )

jO = 078W}1b (703)

where x is the distance measured from the inlet region, 2b is the depth of the
channel and V, is the mean fluid velocity in the channel.
For the cylindrical channel one has [146]
D2/3V1/3

m

jO = 086Wnb

(70b)
where R is the radius of the channel.

Obviously, for any practical situation the flux will remain finite (although large)
in the limit x — 0 due to the tangential diffusion which was neglected by deriva-
tion of Egs. (70a,b).

Except for predicting particle deposition rate for the initial conditions (low
coverage regime), Egs. (62)—(67), (67b)—(70) and (70b) have a significance for
testing the accuracy of numerical solutions of the exact continuity equation, Eq.
(59). These solutions, discussed extensively in previous reviews [48,67,78,133],
demonstrated that the above limiting solutions can be useful for predicting deposi-
tion rate of particles smaller than 0.5 pm in diameter when the specific interaction
energy was characterised by the Type I profile. For larger particle sizes, the
coupling between specific and hydrodynamic interactions is causing a significant
deviation of exact flux from the Smoluchowki—Levich theory [67]. In this case only
the numerical solution of the exact continuity equation assure a sufficient accuracy
of the limiting flux estimation. However, for particle sizes > 1 pwm, and Type 1
profile dominated by strong electrostatic attraction, one can derive limiting, analyt-
ical expressions for j, which can well approximate the exact numerical results. The
derivation is based on the effective hard particle concept [90], i.e. the geometrical
radius of particle a is replaced by the effective radius a* increased by the effective

interaction range A*. Thus, a* is calculated for the HHF model from the formula
[147]

a* = a[1 + Let — 2Leln(1 + Let)| = af, (71)

where Le= Le/a, £ = InQealy"y)|/kT Le Pe) Pe = 2V,, a/D is the dimension-
less Peclet number characterizing the ratio of convection to diffusion effects
[67,133] and V,, is the characteristic convection velocity at the distance a* from
the interface. Eq. (71) is valid for Pe > 1 [147]. It can be deduced from Eq. (71)
that a significant increase in the effective interaction range is expected for high
surface potentials and ka values < 10.

By introducing the concept of the effective interaction radius one can properly
describe the interception effect, dominating for large particles, which is proportio-
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nal to a**. As a consequence the limiting particle flux is approximated by the
expression [147]

1 D

Jo= Epeffiznb (72)

One can formulate Eq. (72) explicitly using the Pe definitions given in Adamczyk
et al. [67]. In this way, one obtains for the spherical collector (in the region close to
the flow stagnation point) the expression

. I/°° %2 I/;° 2,2
Jjo = 1.5Afﬁa n, = 1.5Afﬁa f’n, (73)

For the impinging jet and the slot impinging jet cell one has analogously

Vi
Jo = apazﬁznb (74a)
Ve
Jo = 0‘?“ 1 n, (74b)

where 2d is the slot width.

As can be seen from Egs. (72)—(74b), the flux increases proportionally to the
mean flow rate V,, and to the square of the effective particle radius a*. Since,
according to Eq. (71) the effective interaction radius increase considerably with the
decrease in ka, one can deduce from Egs. (72)-(74b) that the appearance of
attractive electrostatic interactions could enhance manifold particle deposition rate
[147].

A quite opposite situation is met when the electrostatic interactions are of
repulsive character leading to Type II energy profile, characterised by the presence
of an energy barrier. Due to its practical significance this case will be discussed
separately in Section 4.1.2.

4.1.2. The surface force boundary layer approximation

As mentioned, the specific interactions described by Type II energy profile are
very short ranged in comparison with the diffusion boundary layer thickness. This
leads to large potential gradients at the interface which makes exact numerical
solution of the mass transfer equations, Eq. (59) rather cumbersome [131,132].
However, the barrier dominated transport of colloid particles can effectively be
treated by the approximate method developed originally by several authors
[148-151]. The method, referred to as the surface boundary layer approximation
(SFBLA), is based on the assumption that the particle transport through the thin
surface force layer can be treated as a process independent of bulk transport. As a
result, fluid convection is neglected within the surface layer of thickness 8, whereas
the specific interactions are assumed negligible outside 8. We shall formulate the
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SFBLA in a more general form, suitable for treating the problem of the steric
barrier arising due to deposited particles.

The starting point of the approach would be Eq. (47) formulated, by neglecting
fluid convection and using Eq. (56), in the more concise form

j= —D-[Vinn + V®/kT]n (75)

where the function ® = ¢ + kT In f can be treated as the generalised potential.
Because, according to the SFBLA, the thickness of the surface layer is very small in
comparison with the interface dimensions (curvature) one can treat particle
transport through this layer as a one-dimensional problem. As a consequence, Eq.
(75) can be expressed as

dlnn od /kT i)
j(h,t) = —D(h)[ + / }n = —D(h)e‘q’/”ﬁeq’/”““” (76)

dh dh

Considering that the relaxation time of establishing the quasi stationary transport
conditions through this layer v = 8*/D(h) ~ /D, is very short, one can treat j
as a quasi-stationary variable, independent of time and the distance 4. Then, Eq.
(76) can easily be integrated within the domain 8,, < 4 < & which gives the general
expression (positive flux convention used) [135]

n(3)e®®/ KT _ p(3, )e®@n/kT
Jp = R ()
b

where n(3,,), n(d) is the particle concentration at the PM and at the edge of 3,
respectively, and

e®/kT

d
R, = med(h) =R, +R, (78)

can be treated as the static resistance due to the presence of the barrier.
Moreover,

dh

3
R, = fsmm (79a)
and
N efI)/kT -1
R, = /S m[Wldh (79b)

is defined as the excess resistance.

Spielman and Friedlander [149] assumed that the diffusion coefficient is inde-
pendent of the distance A so the appear integration limit in Eq. (79a) could be
extended to infinity.
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One can derive from Eq. (77) several interesting cases. For the interaction
energy Type II profile (characterised by deep PM potential and ¢ — 0 outside the
surface layer) and no steric barrier (when f = 1) Eq. (77) reduces to

n(d) n(d)
Rb - Rexc + RO

Jp = = k! n(d) (80)

where k), = 1/R, is the rate constant of particle deposition.

Eq. (80) can be treated as the generalised boundary condition for the bulk
transport [148-151].

For energy profiles characterised by the presence of the secondary minimum the
expression for the flux becomes

n(d, e /*T n(d,)

eO/KT T o /KT (81)
dh

5 5
sm dh sm
5, D(h) /am D(h)

where ¢’ = ¢ — b, and g, is the secondary minimum depth.

Eq. (81) indicates that for calculating the static resistance R, one should use the
SM potential as the reference value. In other words, the barrier height should be
measured relative to the SM rather than to the bulk zero value as usually done.
This prediction was confirmed by numerical results discussed in Dabro§ and
Adamczyk [152].

Knowing j, one can derive a general expression for the overall flux due to
barrier and bulk transport. In general, for the non-uniformly accessible surfaces
this requires the bulk transport equation to be solved with the boundary conditions
expressed by Eq. (80). Such solutions were derived in the case of the spherical and
cylindrical collectors by Spielman and Friedlander [149] and for the parallel plate
and cylindrical channel by Boven et al. [150] and Ruckenstein [151]. Unfortunately,
explicit evaluation of the overall deposition rate as a function of parameters
characterizing surface interactions can only be carried out numerically.

However, useful analytical expressions for the overall flux can be derived in the
case of uniformly accessible surfaces. This can be done by exploiting the flux
continuity condition j, = j (where j is the flux due to bulk transport through the
macroscopic layer) from which it follows that

n(d) o, = n(d)
R, R

conv

(82)

onv 1S the static resistance of the diffusion boundary layer (up to the point
h = 3). By eliminating n(3) from Eq. (82) one obtains the explicit expression for

where R’
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the overall flux in the form

1
—/nb S
R, + R R, +R

conv conv

j=n@®)/R, = n, (83)

where R, = R, ., + R, is the static resistance of the overall boundary layer in
the absence of the energy barrier. R, can be estimated from previous expres-
sions for the limiting flux since j, =n,/R_.,,- Using this expression one can

transform Eq. (83) into the form

1 1
= : = 84
J ]0 ]0 ]0 j() 56¢/kT— 1 ( )
1+ —R,, 1+_f - dh
n, ny s, D(h)

The use of Eq. (84) requires evaluation of the definite integral which can be
cumbersome. However, explicit results of quite general validity can be derived for
energy profiles exhibiting well defined maxima. Then, expanding the energy dis-
tribution around the maximum in Taylor series one can derive in the case of a
symmetric maximum the formula [148,150,151]

R R 2mkT \"/? /KT (85)
exc — b — Yy D(Sb)
d*d
where Yp = — W R .

Eq. (85) can further be simplified by realizing that vy, ~ &, /8* and D ~ D,3/a
[133]. In this way Eq. (85) can be expressed as

a [2wkT\"?
R, D—( 5 ) ebn/KT (86)
b

For a strongly asymmetric barrier, e.g. of a triangular shape one can analogously
express R, as

I

a kT
, = — —— /KT (87)
Doo d)b
Substituting this expression into Eq. (83) one obtains
=] ! i (8%)
J = ; =
Jo? Ee%/” 1+ Shogedw/kT
D.n, &, by,

where Sh, =j, a/D, n, is the dimensionless flux (Sherwood number). The
dependence of the relative flux j/j, on the triangular barrier height ¢, calculated
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from Eq. (88) is shown in Fig. 15. As one can notice, the effect of the barrier height
is the largest for large Sh values, i.e. high particle deposition rate (larger particle
sizes). Then, for ¢, > 5kT, the relative flux decreases exponentially with increasing
barrier height since
L (b,
= | b | ek 89
1/Jo Sho(kT)e (89)
On the other hand, for low Sk, values (which physically corresponds to the small
colloid particles under low Re flows), the relative flux is insensitive to barrier
height if the inequality is met

b, /kT < —In Shy + In|(In Sh)|

where Sh, < 1.

It is interesting to mention that Egs. (88)—(90) and the results shown in Fig. 15
are of an universal validity and can be used for flux estimation for any kind of a
barrier.

The role of specific interactions and estimations of the range of validity of the
analytical approximations discussed in the last sections have been determined
theoretically in numerous works concerning the barrier-less [67,78,133,147,153-156]
and barrier-controlled deposition regimes [78,128,132,133,152]. It has been pre-
dicted that the limiting flux can be increased considerably by the attractive
electrostatic interactions (barrier-less transport), especially in the case of larger Pe
number (large particle sizes and high Re flows) [147,156] in accordance with Egs.

1072

23 1 1 1
107 5 10 15 okT

Fig. 15. The influence of the triangular barrier height &,/kT (for definition see the inset) on the
relative particle flux j/j, (where j, is the flux when no barrier is present); the curves were calculated
from Eq. (88) for (1) Shy = 1; (2) Shy = 10715 (3) Shy = 1072; (4) Shy = 1073; (5) Shy = 107*.
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(71)—(73). The influence of the double layer model and the surface potentials of
particle and the interface was found to be minor, the ka parameter played a
decisive role [78,147,156]. It was so, however, for collectors placed in stagnation
flows, like the impinging jet cell [147], cylindrical [154] and spherical collectors
either isolated or forming packed bed columns [155,156]. For the parallel and
cylindrical channel [153] the flux enhancement due to attractive double-layer
interactions was fond less significant, except in the region close to the suspension
inlet point.

The role of the dispersion interactions was also extensively studied for various
collectors. In accordance with previous discussion, the dispersion interactions, due
to their fairly limited range (especially when the retardation effect is concerned)
increased the predicted initial flux very moderately. For Pe > 1 (large particle
limit) the flux increase was found proportional to A}j; [157,158]. From these
numerical calculations one can draw the conclusion that, in general, for a particle
size below 0.5 wm the attractive specific interactions exert no appreciable effect on
particle deposition rate which can accurately be determined from the SL approxi-
mation [Egs. (62)-(67), (67b)—(70), (70b)].

A more complicated situation arises for the barrier controlled deposition regime
discussed extensively by several authors [78,128,152]. As expected, the calculated
flux values were found very sensitive to the double-layer model, surface potential,
double layer thickness and the Hamaker constant, since all these parameters
influence significantly the energy barrier height. However, when the deposition flux
is correlated with the interaction energy profile rather than with the above
physicochemical parameters, some conclusions of general validity could be formu-
lated. Thus, it has been found in Dabro§ and Adamczyk [152] that the SFBLA
works well for deposition regimes characterised by Pe < 0.1 (which again would
correspond to particle sizes below 0.5 wm) provided that the energy barrier is
measured relative to the SM depth (cf. Eq. (81)). For larger particles (Pe > 0.1),
the calculated flux values under barrier controlled regime are much larger than the
SFBLA predicts [152] which is due to flow-induced transport of particles through
the energy barrier.

4.2. Role of the lateral particle / particle interactions

The results discussed above concerning particle deposition at the initial, linear
stages may be useful for basic studies of the dynamic interactions in the colloid
particle /solid interface system. Since particle deposition in this case can be treated
as the limiting form of heterocoagulation one can draw important clues about the
stability of colloid mixtures just by measuring particle deposition rate at appropri-
ately chosen surfaces. Also the validity of the DLVO theory for describing
particle /wall interactions can be tested with a good accuracy by performing well
designed deposition experiments.

However, as mentioned before, the linear transport conditions are usually
short-lasting, especially for concentrate colloid suspensions. The deviation from
linearity is due to the presence of particles accumulated at the interface during the
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course of deposition process. The resulting surface blocking effects are very
complex for interacting colloid particles which prohibits any exact mathematical
treatment of these phenomena. Usually drastically simplified models are intro-
duced like the Langmuirian approach discussed above when all hydrodynamic and
electrostatic interactions are neglected and topology of particle distribution is not
considered. Another disadvantage of this model is that the saturation coverages
cannot be determined a priori, not even as crude estimations. This can only be
done experimentally which is bound to large uncertainty due to long deposition
times needed for approaching maximum coverages.

A more realistic description of particle adsorption can be attained using the
random sequential adsorption (RSA) approach developed originally for hard (non-
interacting) particles [159-172] and extended later on for interacting particles
[80,81,173].

The RSA model is based on the main assumptions:

1. Particles are placed at random (shot) over a target, every position on the target
is accessible with equal probability.

2. If the trial (virtual) particle overlaps with any of previously adsorbed particles it
is removed with unit probability.

3. Otherwise the particle is placed with unit probability (hard sphere model) or
with the probability calculated from the Boltzmann distribution by taking into
account the pairwaise electrostatic interactions (interacting sphere model).
Once the particle is adsorbed its position is permanently fixed (localised
adsorption called deposition as above).

4. The process is continued until the entire surface is completely covered and no
more particles can be accommodated thus the maximum (jamming) coverage .,
is attained.

The jamming coverages for particles of various geometrical shape adsorbing flat
(side on) on planar interfaces were determined numerically using the Monte-Carlo
simulation technique [163,167—-170]. For hard spheres (more precisely disks) 6,, was
found to be 0.547 [160,163]. For spheroidal particles adsorbing flat, this value does
not change appreciably with the elongation parameter As [169]. However, for the
unoriented adsorption (when particles can adsorb perpendicularly) the saturation
coverages were found much larger, increasing proportionally to 1/As for higher
elongations [172].

The RSA model can also be applied for determining the surface blocking
parameter B(6) and for modelling adsorption kinetics of both spherical [164-167]
and non-spherical particle, e.g. cylinders, spherocylinders and spheroids [167-172].
It was found that in all cases and not too high surface coverages the blocking
function can well be approximated by the polynomial expansion [164,168,172]

B(®) =1- Y.C,0" (90)

where the coefficients C; = C; were determined for spheres [164], hard (noninter-
acting) spheroids (ellipses) [168], cylinders and spherocylinders [168—170].
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For hard spheres, using the analytical values for C, + C; given in Schaaf and

Talbot [164], one can evaluate Eq. (90) explicitly as

6V3
B(®) =1—40 + —0* +
n

83 + 0(8%) 1)

40 176
/3 312

For low 6 one can arrive apparently at the Langmuirian model since
B(®)=1—-40=1-10/0, (92)

where 6, = 0.25

One can easily notice, however, that this 6, values deviates from the above
mentioned jamming value of 6, = 0.547. This proves that approximating the
blocking function by Langmuir model with the 6, coefficient calculated from the
saturation coverage is rather inaccurate. Similar situation arises for other particle
shapes as well, i.e. the C, coefficient never agrees with the 1/6, value. This can be
observed in Fig. 16 where the exact numerical simulations (points) are compared
with the limiting analytical expansion, Eq. (90) and the Langmuirian model, Eq.
(92). As one can observe, the low coverage expansion works well for 6 < 0.3 both
for spheres and spheroids (ellipses). On the other hand, the Langmuir model gives
poor approximation of exact date, especially for non-spherical (elongated) particles.

The deviation from the Langmuir model becomes also pronounced for larger 6
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Fig. 16. B(6) for spheres and spheroids (side on adsorption), the points denote the exact MC
stimulation results, the continuous line represents the low-coverage approximation Eq. (90) and the
dashed lines show the Langmuirian model, when B(6) = 1 — 6/0,.. (1) As = 0.2; (2) As = 1 (spheres).



Z. Adamczyk, P. Weroniski / Adv. Colloid Interface Sci. 83 (1999) 137-226 191

close to the jamming limit, when the blocking parameter can be approximated by
the formula [164,166,170,171]

B(®) = (6, — 0)" (93)

where m is an integer equal to 3 for sphere adsorption [164], equal to 4 for a side
on adsorption of anisotropic particles [166,169] and equal to 5 for unoriented
adsorption of spheroids [172]. One can deduce from Eq. (93) that the blocking
effects predicted in the RSA model are considerably more pronounced than in the
Langmuirian model. This originates from the fact that due to topological constrains
only a small fraction of the free surface 1-6 is available for particle adsorption, i.e.
in the later adsorption stages most of the unoccupied surface fragments (targets)
are too small to accommodate additional particle [67].

Similar results as that expressed by Egs. (90)-(93) can also be derived for
interacting particle adsorption provided that the effective interaction range re-
mains much smaller than particle dimensions [80,81,173]. Then, the many-body
electrostatic interactions between adsorbed and adsorbing particles can be approxi-
mated by the sum of interactions between particle pairs. The electrostatic energy of
the interaction of the pair is calculated from the above discussed double-layer
models using the LSA for spherical particles [173] and the Derjaguin and ES
approaches for anisotropic particles [80,81]. In practice the RSA modelling for
interacting particles can only be performed in terms of time consuming MC
numerical simulations [48,67,80,81,173]. It was demonstrated, however, that the
limiting expressions, Egs. (91) and (93) retain their validity if the interacting
particle is replaced, in accordance with the EHP concept [90], by the effective hard
particle having the size increased by the effective interaction range A*. As
demonstrated in Adamczyk and co-workers [81,173] A* is proportional to Le both
for spheres and spheroids. This can be seen in Fig. 17 where the dependence of
H* = h* /a on Le(ka) is plotted for spheres, and prolate spheroids having the axis
ratio As equal to 0.5 and 0.2, respectively. Thus, H* can well be approximated by
the relationship analogous to Eq. (71)

H* = S0 (94a)
2 d)ch

where ¢, is given according to the LSA model by sa(kT/e)* Y " and &, is the
characteristic energy close to a kT unit [81].
In terms of H*, the C, + C; constants in Eq. (91) scale up as

Ci = C,(1 + H*)
ci =C,(1 + H*)* (94b)
ci =c,(1 +H*)

Analogously, the 6, for interacting particles is given by the simple expression

(referred to as the maximum coverage 6,,,)
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Fig. 17. The dependence of the effective interaction range H™* on the xa (Le) parameter [81]. The
points represent exact numerical results for prolate spheroids characterised by various elongation: e,
As =1 (spheres); WM, As =0.5; a, As =0.2; the solid lines show the analytical approximation
calculated from the equation H* = 0.5 Leln(dy/db,;,).

0, =6,/(1+H*=96,C,/CF (95)

The range of the validity of the EHP approximation, expressed by Eq. (95) can
be estimated from data shown in Fig. 18 where the dependence of 9,,./6,, vs. ka is
plotted for spheres and spheroids (side on adsorption) characterised by As = 0.5
and As = 0.2, respectively. It can be observed that Eq. (95) reflects well the exact
results obtained from the numerical MC RSA simulations (points), especially for
ka > 10 (thin double layer limit). The results shown in Fig. 18 suggest that the
lateral electrostatic interactions (described by LSA model) will considerably influ-
ence the jamming (monolayer) coverage of colloid particles. Thus, for spheroidal
particles with As = 0.5 the monolayer coverages drops to 50% of the hard particle
value (= 0.583) for double layer thickness equal to 0.1 of the longer particle axis.
Experimental results concerning an experimental verification of the theoretical
data shown in Fig. 18 will be discussed later on.

The range of validity of the EHP approximation was discussed extensively in our
previous reviews [48,67]. It was concluded that the RSA model extended for
interacting particles proved useful for interpreting experimental results under
moderate flow conditions. However, some deviations were observed for very low Re
number flows [67], no flow conditions [174,175] and for adsorption at surfaces
precovered with smaller particles [176]. The observed adsorption kinetics proved to
be faster than the RSA model predicts. As pointed out in Adamczyk and co-workers
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Fig. 18. The dependence of the normalised maximum surface concentration 8 = 6,, /6., on the ka
parameter; the points denote the numerical results obtained for interacting prolate spheroids of various
clongation, i.e. As =1 (spheres), As = 0.5 and As = 0.2, the broken lines denote the analytical
approximations calculated from Eq. (95).

[67,135] the deviations appeared because in the RSA model particle deposition is
treated as a surface process independent of distance from the interface and
particle diffusion. These limitations can be avoided in the recently developed
diffusion RSA (DRSA) approach [134,135,177,178] which considers a one-dimen-
sional transport of particles through the adsorbed particle layer. Thus, according to
this approach the blocking effects due to adsorbed particles are not limited to the
vicinity of the interface but they also influence particle transport in the bulk by
decreasing the volume available for moving particles. For one-dimensional prob-
lems this exerts analogous effect as an decrease in the activity coefficient f which
becomes dependent both on 6 and the distance 4. Physically, this would exert an
analogous effect as an energy barrier extending over certain distance from the
interface whose magnitude is growing with the coverage 6 (time). Moreover, the
height of the maximum can be closely related to the surface blocking parameter
determined previously from the RSA model. It should be mentioned that a similar
concept was developed in Warszyfiski [179] to interpret deposition kinetics (initial
flux) for polymer coated particles.

4.2.1. The concept of the steric barrier
The starting point of our considerations is Eq. (77) expressed in the following
form by noting that ® = ¢ + kT In f(6,h).
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j=[n(®)f(0,8)e®/ T — n(3,)f(0.3,)e®/*T| /R (8) (96)

where the steric barrier resistance R (6) is given by Adamczyk et al. [135]

R,(0) = R...(8) + R, (97a)
with
R (§) = fg[e‘bﬁ“”h)/” B 1]e¢/deh
B D(h)
5 e¢/kT
5 D(h) (97b)

¢, = kTInf(0,h)

It should be mentioned that the distance & is defined as such where the activity
coefficient becomes unity. Thus, 8 is comparable with particle diameter (for hard
particles & equal to exactly 2a). Since the convective transport in this layer was
neglected, Eq. (96) is expected to become less accurate for deposition regimes
characterised by larger Pe values, i.e. for larger particles, when this layer is
penetrated by flow. As showed by Dabro§ and van de Ven [180] this may happen
for Pe > 0.1.

Assuming, in accordance with the PS model that ¢,, tends to minus infinity, Eq.
(96) can be formulated as

j =k, n(3)B(0) = j,B(0) (98)
where j, is the flux in the absence of adsorbed particles (initial flux) and
k, = ed>(8)/kT/R0

is the adsorption rate constant.
The function B(6) which can be treated as the generalised surface blocking
parameter is defined as

-1

B b 0.0/ KT _ 1 e¢/deh
_ R, fg Le “Uom
B() = — 2 = {14 2m 99
( ) RO + Rexc(e) 3 e¢/kT dh ( )
5,, D(h)

It should be mentioned that Eq. (98) constitutes the direct proof of the
relationship used widely in previous works concerning the RSA governed adsorp-
tion kinetics [48,67].

It is difficult to evaluate B(8) explicitly in the general case because the activity
coefficient is dependent not only on the distance /4, the surface coverage 6 but also
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on the particle distribution over the surface. This distribution is in turn related to
particle transport mechanism, i.e. diffusion, flow, external force [135]. However,
some useful results can be derived from Eq. (99) for limiting adsorption regimes.
Thus, in the case when the overall interaction potential ¢ (which can in general
consist of the specific and external force contribution) exhibits a well defined
maximum somewhere within 8, < & < & then Eq. (99) can be approximated by

B(0) = e~/ kT = £(9.5,) (100a)

where 8, is the position of the maximum (barrier).

Eq. (100a) is valid for arbitrary shape of the barrier, provided that its extension
(defined as the distance where the energy decreases by approx. 5 kT in comparison
with its maximum value) is significantly smaller than the distance .

If the maximum is due to short ranged particle /interface electrostatic interac-
tions or strong external force (gravity) acting outwards from the surface then the
position of the maximum is close to the interface, so 8, ~ §,,, is a small fraction of
particle dimensions. Then, the basic assumptions of the RSA model are fulfilled
since all particles which overlap with adsorbed particles (at the surface) are
removed due to presence of repulsive forces (energy barrier). Therefore, the
activity coefficient f(6,5,) can well be approximated by its surface value given by
the surface blocking function B(6) originating from the RSA model [Egs. (91)—(93)].
One may therefore write

B(0) = ¢~ ¢¥O/kT — B(p) (100b)

where ¢! is the value of ¢, at P.M.

In this case, all the previous results derived from the RSA model for hard and
interacting particles should retain their validity.

It seems also that these conditions were fulfilled in the experiments performed
in [173,181,182] using the impinging jet cell when the gravity force was directed
outwards from the interface.

Other useful results can be derived from Egs. (97a,b) in the case of small colloid
particles when the external forces become negligible and the specific interactions
are described by the Type I profile close to the PS model. Then, the expression for
B(0) simplifies to the form

s dh
5,, D(h)
5 e POm/KT

s, D)

m

B(§) = (101)

dh

where the ¢, /kT function can be expressed as the power series of 6 [135]

b,/kT =1 = Ci(h)8 + C5(h)8, + 0(6)’ (102a)
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where

Ci=4/1-¢
1 1

8
C) = —|2€%(&* — 1)arccos
T

and £ = h /8.

It can be easily noticed that for £ — 0 the C| and C; functions approach the
RSA values, i.e. 4 and (6,/3) /w, respectively.

Using Eq. (102a) one can evaluate the expression for B(6), Eq. (101) as

B(8) =1 —C,06 + C,(8)* + 0(6%) (103)
where the C, coefficient is given by the analytical expression

C,=1[6Ind — (1 —3)5— 75— 438)]/[1.5Ind — 3(1 — 3)]
5=3,/8

(104)

One can calculate from Eq. (104) that for = 1072, C, is equal to 3.3 whereas
for & = 1073, C, equals 3.5 which is only 12.5% less than the RSA value equal to
4. The 52 coefficient was found numerically to be 1.2 for S =102 [135].

The expansion, Eq. (103) suggests that the DRSA model in which the hydrody-
namic interactions sphere /interface were considered does not deviate considerably
from the classical RSA model. Thus, for example for 6 = 0.2 one has B(8) = 0.33
from the RSA model whereas B(8) = 0.37 for the DRSA model. However, this
hypothesis cannot be proven at present time due to mathematical difficulties in
specifying the higher order terms in the expansion, Eq. (103).

Useful estimates of B(0) valid for higher coverages can be derived, however, by
exploiting the properties of ¢, i.e.

$,(0,h) > —kTInB(0) = $°(0) forh — 3,
b, (0,1) =0 for h > 8 (105)

One can approximate the complicated distribution of ¢ (6,4) by the linear
distribution, analogous to the triangular barrier discussed above, i.e.

b, = $J(0)(1 — §) (106)
Substituting Eq. (106) into Eq. (99) one can derive for B() the formula
1 — 1Ind
kT 1 _

¢T? - 51118

B(0) = e s /KT (107)
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Fig. 19. The dependence of the steric interaction energy ¢ on @ for interacting spheres; the points
denote the numerical simulations performed for: (1) H* = 0.3; (2) H* = 0.2;(3) H* = 0.1;(4) H* = 0
(hard particles); the continuous lines denote the analytical results calculated form Eq. (90) and the
broken line shows the asymptotic results calculated from Eq. (93).

For larger ¢ the pre-exponential factor becomes practically independent on ¢°
and Eq. (107) simplifies to

_ 2 2
= — b /kT -
B(9) = (1 s )e (1 s )B(e) (108)

The dependence of the steric barrier height ¢ on 6 determined from the
numerical MC simulations using the RSA model is plotted in Fig. 19 both for hard
and interacting particles. The exact results (points) are compared with the approxi-
mate results stemming from the low coverage expansion, Eq. (90), when ¢! = —kT
In(1 — C,06 + C,0%) and the high coverage expansion when ¢! = —m kT In(6, —
0) + C’ (where C’ is the dimensionless constant). One can see that these analytical
models approximate well the exact numerical data both for hard and interacting
spheres (characterised by H* = 0.1, 0.2, and 0.3). From the data shown in Fig. 19
one may conclude that the steric barrier height increases rapidly when 6 ap-
proaches the jamming (maximum) coverages. Since the accuracy of the steric
barrier concept is expected to increase for larger barrier height (i.e. for 6 — 6,)
one can deduce that the previously calculated 6, values (using the classical RSA
model) will retain their significance as the most relevant parameters in the DRSA
model.

It seems that extension of the DRSA model to non-spherical particles would be
prohibitive mathematically since the B(6) function would depend not only on the



198 Z. Adamczyk, P. Weroniski / Adv. Colloid Interface Sci. 83 (1999) 137-226

distance from the interface but also on particle orientation which in turn depends
on local structure of adsorbed layer. However, the steric barrier concept could be
used as a reasonable, first-order approximation at least for coverages close to
jamming which are shown in Fig. 20 for hard prolate spheroids (derived from MC
RSA simulations [81]). As one can observe, in the case of the side-on adsorption,
the dependence of 6, on the elongation parameter As exhibits a maximum around
As = 0.4. On the other hand, in the case of unoriented adsorption 6, increases
monotonically when As is decreased, becoming proportional to 1/A4s for As — 0
[81]. Note that the exact data for the unoriented adsorption deviate from the values
calculated as an average of parallel and perpendicular orientation (shown by
broken line in Fig. 20). This means that for later adsorption stages, due to
topological constrains, the spheroids tend to adsorb under an orientation close to
perpendicular [81]. This validates, at least to some extent the use of the steric
barrier concept based on the one-dimensional diffusion equation. Due to complex-
ity of the calculations, the jamming coverages for interacting spheroids (unoriented
adsorption) were not calculated. It was shown in [81], however, that using the EHP
concept 6 for interacting particles which can be calculated from the approximate
formula

) ) (2.07 + 0.811As + 2.374s> — 1.254s>)(1 + H*)(1 + H* /A,) (109)
ma 2.07 + 0.8114s* + 2.374s** — 1.25A4s*°

where As* = (4s + H*)/(1 + H*)

Knowing 0,,, one can then calculate the steric barrier ¢’ dependence on 0
which is plotted in Fig. 21 both for hard and interacting spheroids, characterised by
H* = 0.05, 0.1, 0.15 and 0.25. As one can observe the high coverage formula Eq.
(93) with the exponent m = 5 which reflects well the exact numerical data. Thus,
using Figs. 20 and 21 with the interpolating function given by Eq. (109) one can
estimate the effect of the steric barrier on spheroidal particle adsorption.

All the results discussed hitherto were concerned with the transport through the
layer of thickness & with the convective effects neglected. In practice, for protein
and colloid suspensions, 8 is a small fraction of the overall diffusion boundary layer
thickness only where the convection or external force dominate. In order to derive
equations characterising the overall transport rate, one should couple the transfer
rates through & and the diffusion boundary layer, analogous to the SFBLA
concept. In this way one can derive for the overall adsorption rate the formula
[135]

) ) Ka
J(0) =jy 1 (110)
Ka -1+ ——
B(6)

where
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Fig. 20. The dependence of the jamming (maximum) surface coverage 6,, on the elongation parameter
As determined numerically (points) for hard prolate spheroids under unorientated and side-on adsorp-
tion conditions: the solid line denotes the interpolation results [172] and the broken line shows the
averaged from side-on and perpendicular orientation.

Rconv (111)
RO

Ka =

Eq. (110) can be used for defining the overall blocking function B(6)
- j Ka
B(8) = — = T (112)

Jo
Ka—1+ ——
B(6)

The Ka constant can explicitly be evaluated as

1

= — 113
28hyq, (113

Ka

5 eb/KT

DCZ)
where g, = %/i;m D)

Note that Ka > 1 because R,,,, = R,. When Ka assumes values much larger
than unity (as is the case for protein and colloid particle transport) Eq. (112)
simplifies to

dh.
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Fig. 21. The dependence of ¢ on 6 for interacting prolate spheroids (As = 0.2 unorientated adsorp-
tion); the points denote the numerical simulations performed for: (1) H* = 0.25; (2) H* = 0.15; (3)
H* =0.1;(4) H* = 0.05; (5) H* = 0 (hard particles); the continuous lines denote the analytical results

calculated from ¢? = —kTIn(1 — C,6 + C,0%) and the broken lines show the results calculated from

Eq. (93).

B(®)=1-|=—— —1|/Ka (114)
B(6)

Substituting B(#) = 1 — C, 6 one obtains
By =1- 1o (115)
 Ka

Egs. (114) and (115) clearly indicate that in the case of large diffusion boundary
layer thickness (small particles) the influence of the surface blocking effects on
particle adsorption rate will be negligible. In other words, the precise value of the
C, + C, constants becomes irrelevant since the adsorption rate remains un-
changed (equal to the limiting flux j,) as long as 1/B(8) < Ka — 1. However, the
surface blocking effects become important when

1
B(6)
Using Egs. (93) and (108) this can be expressed as
1

— > Ka — 1 (117a)
(6, —0)
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or

1
Ka — 1

0, — 0 <1 (117b)

Eq. (117a) indicates that for 6 approaching the jamming (or maximum) coverage
this inequalities always fulfilled and the blocking effect described by the two-di-
mensional RSA model determine the overall transport rate.

Using the overall flux expression Eq. (110) one can formulate the kinetic
equation for the deposited phase in the form of [135]

de . Ka b &
— = wa’j, 7 = ma’j,B(6) (118)

dt
¢ B(0)

By defining the dimensionless time T = wa?j,t one can integrate Eq. (118) to
the form of

o dvy
(Ka—10+ | =—=Kar (119a)
fo B(y)
Substituting the DRSA expression for B(8) given by Eq. (103) one can convert
Eq. (119a) to the implicit non-linear equation

1 0,(0, — 6)
(Ka — 1) + = n =Kar (119b)
Cz(ﬁ] - 62) 62(91 - 9)
here, 6 G 1-gql o G [1 + q] 1 ue
whnere, = —— — y = — + R = - —
Y e Yo Sl 2

2
For Ka = 1, Eq. (119b) can be explicitly evaluated as

1 — equlKa"r
60, — (120a)
1 — _lefanaT
62

On the other hand, assuming Ka = 1 and using Egs. (93) and (108), one can
deduce from Eq. (119a) the limiting form

0, — 06 ~K'g[1/0n=1] (120b)

where K’ is the dimensionless constant.

The steric barrier approach and the equations derived in this section are
expected to describe adequately deposition of submicrometre sized particles for
which the diffusional transport dominates at distances comparable with particle
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diameter where there is no coupling between the specific and hydrodynamic force
fields. For larger particles the hydrodynamic flow penetrates the surface layer and
a significant coupling between the electrostatic and hydrodynamic force fields
occurs. This is leading to the hydrodynamic scattering effect (HSE) enhancing the
surface blocking phenomena. As discussed in Adamczyk and co-workers [48,67]
these complex many-body interactions can to some extent be quantified in terms of
the Brownian Dynamics simulations which are, however, very tedious, giving
specific results of limited applicability [48,67]. Some approximate analytical expres-
sions derived from the modified RSA model were reported in Adamczyk et al.
[182]. For sake of brevity, in this review we do not address this problem in more
detail.

5. Experimental results

The literature concerning experimental measurements of colloid particle deposi-
tion at solid /liquid interfaces is fairly extensive and has been reviewed in some
detail in our previous works [48,67,78,132]. In this paper we present some selected
experimental results obtained under well-defined transport conditions which eluci-
date the role of specific interactions in particle deposition processes. The data
concerning limiting flux measurements (linear adsorption regime) are discussed
first, whereas the last part of our paper will be focused on describing the effect of
surface blocking effects (steric barrier).

5.1. Experimental methods — general remarks

There exists a large variety of experimental methods aimed at a quantitative
determination of colloid particle adsorption kinetics which can be attributed to the
indirect and direct category. The simplest to implement are the indirect methods
when the suspension concentration changes in the bulk are measured prior and
after contact with the adsorbent (interface). The depletion of the solution concen-
tration is often determined by measuring optical density changes (turbidimetry)
[183], by interferometry or nephelometry [184] or by applying the HPLC and FPLC
methods coupled with appropriate detecting system [185,186]. Sometimes fluores-
cent [187] or radioactive [188] labelling of the adsorbate is used.

For larger colloid particles one can use the on line particle concentration
detection based on the light scattering or Coulter counter principle. By using the
depletion methods one implicitly assumes that the amount of the deposited
(adsorbed) substance is equal to the amount disappeared from the solution. This
sets certain limits on the accuracy of the depletion methods since adsorption on
container walls or adsorbate trapping into pores cannot be a priori excluded.
Another disadvantage of these methods is that one can usually gain a global
information averaged from a considerable surface area of the interface. As in
results, any detailed information about the local structure of the mono-layer (e.g.
density fluctuations or inhomogeneities) is lost.
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In this respect, these indirect methods are more accurate when the surface
concentration of adsorbed particles is determined by measuring a physicochemical
quantity which can unequivocally be assigned to the presence of deposited parti-
cles. Usually the change of optical or electrokinetic properties (streaming poten-
tial) due to adsorbed layer is exploited for surface concentration determination.
Often the isotopically labelled particles are used to produce a well detectable
signal stemming from the adsorbed layer.

Albery et al. [189,190] determined the concentration of adsorbed particles by
measuring the intensity of the scattered light in the direction normal to the
incident beam. The method was applied for studying the effect of electrode
(prepared from a conductive glass) potential on adsorption kinetics of carbon black
particles.

Ellipsometry is another optical technique widely used for studying bioparticle
adsorption. The method is based on the principle that the state of polarisation of
light changes upon reflection from an interface. Jonsson et al. [191] constructed the
flow cell enabling the ellipsometric measurements to be performed with a support
adsorbing surface exposed to the flow of well-defined geometry.

Refelectometry is a new optical method gaining importance in studies on protein
and nano-sized colloid particle deposition [174,192-194]. The method relies on the
detection of reflectivity changes caused by the adsorbed layer having the refractive
index different from the suspending medium. The polarised laser beam is focused
on the surface to be studied at the angle close to the Brewster’s angle. The ratio of
reflected intensities of the perpendicular and the parallel polarisation components
is measured and converted into an output signal. After a proper calibration and
adopting some model assumptions for the configuration of the adsorbed layer the
output signal can be related to the surface concentration of adsorbate. This
method was further developed in Schaaf et al. [195] by allowing for changes in the
incident angle of the beam around the value of the Brewster’s angle in order to
attain higher accuracy. This method, called scanning angle reflectometry (SAR),
was successfully applied for determining the mean thickness and mean refractive
index of the fibrinogen layer adsorbed at silica [196]. The main advantage of
ellipsometry and reflectometry methods is that the optical signal can be detected
directly without disturbing the system by introducing any labels such as radioiso-
topes or fluorescent dyes. On the other hand, one should remember that the
sensitivity of the ellipsometry and reflectometry methods is rather limited, espe-
cially for low surface concentrations.

Another class of indirect methods aimed at studying particle adsorption is based
on the radioactivity measurements of labelled particles [197-202]. The experiments
are usually performed using a single capillary [199], hollow fibres [199] or parallel-
plate channel [201]. Although the radioactivity method is rather sensitive it has
limited accuracy due to presence of background radiation.

Other methods of determining particle adsorption exploit the fact that the
electrokinetic potential of a solid /liquid interface in an electrolyte solution is very
sensitive to the amount of adsorbed substance (both charged or uncharged).
Usually the streaming potential of single capillaries is measured enabling one to
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determine adsorbed amounts of polyelectrolytes [203], polymers [204] and proteins
[193,194,205] in the range of a small fraction of a mono-layer. Thus, the accuracy of
the electrokinetic method exceeds considerably that of the optical methods. How-
ever, there is no well-established theoretical basis for calculating quantitatively the
surface concentration of adsorbate from the measured streaming potential changes,
so the semi-empirical approaches are used [206]. Another disadvantage of the
electrokinetic method is that its accuracy decreases considerably for high electro-
Iyte concentrations (low signal) and for low concentrations (appearance of surface
conductivity).

The indirect methods mentioned above are in principle applicable for arbitrary
sized particles but they are especially well suited for semi-quantitative studies of
protein, polymer and small colloid particle adsorption for surface coverage exceed-
ing 10%.

It seems that an unequivocal determination of particle surface concentration as
a function of various physicochemical parameters can only be achieved using the
direct methods based on optical, AFM or electron microscope observations. For
suspensions of larger sized colloids or bacteria the number of particle adsorbed can
be determined in situ, in a continuous manner using the optical microscopy
coupled with a micrograph [140-143,173,176,180] or image analysis technique
[181,207,208]. Usually, the well-defined transport conditions are realized using the
impinging-jet cells [140-143,173,175,176] or the parallel-plate channel [207-209].
Recently, the AFM tapping mode was used for direct in situ imaging of latex
particle (diameter, 0.116 pm) adsorbed on mica [210]. However, the use of this
technique is very awkward due to artifacts stemming from tip-induced aggregation
of the suspension, convolution of the tip and particle signal, adhesion of particles
to the tip, etc. [210]. A considerably better resolution can be achieved by imaging
the particle in the air upon drying the sample. Such drying procedure must also be
applied when adsorption at non-transparent surfaces is studied. This approach was
used for determining particle deposition rate at the rotating disc [211-213].
However, this highly invasive procedure may lead to particle aggregation or
removal due to strong capillary forces appearing upon drying. In order to eliminate
this deficiency, Harley et al. [214] developed an ingenious experimental technique
based on the thin film freeze drying principle followed by the scanning microscope
examination of the interface with adsorbed particles. Using the method (referred
to as TFFD-SEM) they have examined adsorption kinetics of small negatively
charged polystyrene latex on larger positively charged particles.

Due to reliability and accuracy of the direct method, it seems to be the most
appropriate for a quantitative verification of theoretical predictions, especially
those concerning initial deposition rate when the surface coverage remains at a 1%
order.

5.2. The initial deposition rates

The occurrence of the linear deposition regimes under barrier-less transport
conditions in experiments involving colloid particles was often demonstrated
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[140—144,210]. The quantity which was measured directly in these experiments was
the number of particles N, found over equally-sized surface areas AS. Since N, is
a statistical variable which obeys the Poisson fluctuation law [140] for low coverage,
the accuracy of determining the average value of (N,) is inversely proportional to
N, (where N, is the total number of particles counted). In the above experiments N,
was usually above 1000 which gives the S.D. of (N, approximately 3%. For higher
coverage the fluctuations in N, are considerably reduced due to exclusion affects
[140,215] which increases significantly the accuracy of measurements. On the other
hand, for barrier-controlled deposition regimes the number of particles adsorbed is
generally very low so N, is subject to considerable fluctuations, increased by
surface heterogeneity. In these cases the S.D. of (N, ) may well exceed 10%.

By knowing (N, the normalised adsorption rate is calculated using the defini-
tion, i.e.

A(N,Y 1 A8

= — — 121
ASAt wa® At (1z1)

Jo =

where A(Np) is the change in the averaged number of particles adsorbed over AS
within the time interval A¢. In order to increase the accuracy of j,/n, determina-
tion averages from many experiments with different »n, are taken and the non-lin-
ear curve fitting procedure is applied [182].

The relatively high accuracy of the initial flux determined in this way was
exploited for determining the range of validity of the convective diffusion theory, in
particular the Smoluchowski—Levich approximation. The most interesting task was
an experimental proof of the existence of minimum deposition rate predicted
theoretically to appear for micrometer sized particles [72,153]. This was achieved in
Adamczyk et al. [140] by using the impinging jet cell and mono-disperse polystyrene
latex suspensions of negatively charged particles. Particle deposition occurred at
modified mica surface (positively charged) which assured localised and irreversible
adsorption conditions. The ionic strength in these experiments was kept relatively
high (10™* M) in order to eliminate the electrostatic interactions. The results
shown in Fig. 22 suggest that for particles having a size < 1 pm, the adsorption
rate j,/n, can well be reflected by the Smoluchowski—Levich theory depicted by
the dashed line. This suggest that for colloid particles the initial flux decreases as
a~?/? in accordance with Eq. (66) which indicates that the diffusion and convection
were the dominated transport mechanisms. On the other hand, for particle sizes
> 1 wm, the interception effect is playing an increasingly important role, especially
for higher flow rates (Re = 150). This causes a considerable (manifold) deviation
of the limiting flux from the Levich theory. Thus for d > 1 um, j,/n, seems to
increase parabolically with particle size in accordance with Eq. (74a). Note that the
numerical solutions of the exact transport equation, Eq. (60) agrees well with the
experimental data for the entire range of particle sizes studied.

In order to elucidate the role of the electrostatic interactions in colloid particle
adsorption, a series of experiments has been performed in Adamczyk et al. [147]
focused on measurements of the ionic strength effect. Typical results obtained in
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Fig. 22. The j,/n, dependence on particle diameter d. The points show the experimental results
obtained in the impinging-jet cell using latex suspensions [140] (I = 103 M). The solid lines are the
exact numerical results and the broken lines represent theoretical results derived from the Smolu-
chowski-Levich approximation for Re = 150 (curve 1) and Re = 30 (curve 2).

the impinging jet cell using mono-disperse latex suspension (averaged particle
diameter, 0.68 wm) are shown in Fig. 23. As one can notice, for 1 > 107> M, the
electrostatic interactions seems to be effectively eliminated since the limiting flux
jo/n, attains a plateau values for all Re numbers studied (8-150). This confirms
that the results shown previously in Fig. 22 can be treated as the limiting values,
characteristic for hard particles. On the other hand, for decreasing ionic strength
the limiting flux is enhanced considerably over the hard particle values (for
Re = 150 this increase is approximately four times). It should be observed that the
flux increase remains fairly independent (within experimental error bounds) of the
kind of electrolyte used, i.e. KCl, CsCl, LiCl, BaCl, and K,SO, (at equal ionic
strength). Thus, the flux enhancement for larger particle size and the indifference
to electrolyte composition is in good agreement with the EHP concept described by
Eq. (74a). Note also that the numerical results (continuous lines in Fig. 23) are in a
quantitative agreement with the experimental data for the entire range of ionic
strength investigated.

The limiting flux increase in dilute electrolyte solutions due to the interception
effect is a universal phenomenon occurring for other flow configurations more
related to practice. For example, Elimelech [156] carried out a series of throughout
experiments on particle deposition (filtration) in columns packed with glass beads
(having averaged diameters of 0.046 cm). The suspensions used was positively
charged latex particles of various size ranging from 0.08 to 2.51 pm with the ionic
strength varied between 5 X 10~° M (de-ionized water) and 0.1 M. The number of
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Fig. 23. The dependence of the normalised initial flux j,/n;, on the ionic strength I regulated by
various electrolytes; the points denote the experimental results obtained for latex particles (averaged
particle size, 0.68 wm) in the impinging-jet cell: (1) Re = 150; (2) Re = 80; (3) Re = 28; (4) Re = &; the
continuous lines are the theoretical results obtained from numerical solutions of the exact transport
equation.

particles adsorbed was determined indirectly (depletion method) by monitoring the
optical density change at the outlet of the column. Some selected results for a
1.15-um particle suspension are shown in Fig. 24 in the form of the single collector
removal efficiency (or reduced particle flux j,/n,) vs. the ionic strength I. As can
be observed, the experimental results resembling closely those obtained in the
impinging jet cell (see Fig. 23) indicate that the increase in initial particle flux can
be as large as four times when using de-ionized water. This effect can quantita-
tively be interpreted in terms of the numerical solutions of the two-dimensional
continuity equation [156]. Similar results were obtained for larger particle sizes
although the measured particle deposition rates were generally smaller than
predicted theoretically.

Other data confirming the significant role of the attractive double-layer interac-
tions in particle deposition phenomena are presented in Fig. 25. These results were
obtained in the slot impinging jet cell using a mono-disperse latex suspension
(averaged particle size, 1.48 wm) [144]. As can be observed the agreement between
the experimental and theoretical data is satisfactory for the entire range or Re
number studied (where the Re number was defined as Re = Q /Iv, where Q is the
volumetric flow rate and [ the with of the rectangular capillary). It should be noted
that for Re < 4 (which corresponds to Pe < 1072) the experimental results ap-
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Fig. 24. The single collector removal efficiency m, and j,/n, dependence on the ionic strength I; the
points show the experimental results obtained in the packed bed column using positively charged latex
suspensions (averaged particle diameter of 1.15 wm [156]). The solid line denotes the theoretical results
obtained numerically.

proach the same limiting curve which suggests that for low Reynolds number flows
the attractive electrostatic interactions exert a negligible effect on particle deposi-
tion rate.

The above presented results and others discussed elsewhere [67,78] confirmed
quantitatively the validity of the convective diffusion theory incorporating the
specific force fields into the transport equations. It should be remembered,
however, that the limiting flux measurements cannot be used for an unequivocal
discrimination between various double-layer interaction models. This is so because
the increase in particle flux is governed by the magnitude of interactions at
distances comparable with the double-layer thickness and larger, where various
models give similar results (see Figs. 11 and 12). Thus, the validity of the convective
diffusion theory under barrier-less transport conditions can to some extent be
attributed to low sensitivity of the measured deposition rate to these parameters
which are difficult to control as, e.g. the spread of particle charge distribution,
surface heterogeneity, etc. Thus, for example a uncertainty in particle zeta poten-
tial of 10 mV will result in a change of particle deposition rate of several percent.

A different situation is expected to occur for systems characterised by Type 11
energy profile, i.e. under the barrier-controlled deposition regimes. In such cases, a
small perturbation in the governing parameters, such as zeta potentials, particle
size, local interface geometry and charge heterogeneity will result in a large,
usually non-linear, response of the system. As a result, the experiments carried out
under barrier-controlled transport conditions are usually less reproducible and
difficult for an unambiguous theoretical interpretation. A general feature observed
in this type of experiment is that the measured limiting flux values are much larger
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Fig. 25. The j,/n, vs. Re dependence. The points represent the experimental results obtained in the
slot impinging-jet cell [144] using latex suspension of 1.48 wm averaged diameter. The solid lines are the
exact numerical results and the broken line shows the Smoluchowski-Levich approximation: (1)
I=103M; ) 1=10"*M;3) I =107 M.

than theoretical predictions both for submicrometre [212] and larger [215] particle
sizes.

Typical results obtained by the rotating disc technique followed by direct
microscope determination of coverage are shown in Fig. 26 [212] (average size of
latex particles used in these experiments was 0.3 wm). As can be seen, the
theoretical prediction based on the exact solution of the convective diffusion
equation overestimate considerably the measured deposition rates for I < 0.1 M.

A similar behaviour was reported by Varennes and van de Ven [216] who used
the impinging jet cell to determine deposition rate of latex suspension (averaged
particle size, 3 wm) at cover glass interfaces. They detected a measurable deposi-
tion rate for ionic strength as low as 107> M in contrast to the theory predicting in
principle no deposition under these conditions. The discrepancy was attributed to
polymer filaments protruding from the latex surface, responsible for the ‘hairiness’
of the particles.

It seems, however, that the positive deviation from theoretical flux values can be
more naturally explained in terms of the surface heterogeneity hypothesis put
forward in Adamczyk [78] and Song et al. [106]. The simplest possibility arises when
due to natural fluctuation phenomena the charge on particles becomes non-uni-
formly distributed forming local micropatches characterised by more favourable
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Fig. 26. The influence of ionic strength I on the relative initial flux j/j, (where j, is the flux value in
the absence of electrostatic interactions); the points are the experimental results obtained for latex
suspension using the rotating disc method [212]. The solid lines are the theoretical results predicted for
a homogeneous charge distribution (curve 2) and a Gaussian charge distribution characterised by the
relative S.D. of 0.35 (curve 1).

deposition condition than the average surface (this will correspond to the random
heterogeneity hypothesis). Even if the fraction of these areas remains very low (of
the order of 1% of the total area available) the overall deposition rate will be much
larger than theoretically predicted for uniform surfaces due to its large sensitivity
of particle flux to surface charge (potential). This hypothesis is strongly supported
by the kinetic curves exhibiting saturation at low surface coverage of the order of
percents [207-209] and a gross unevenness of the deposited layer.

Similarly, microphoretic measurements of zeta potential of particle suspensions
suggests that there exists a natural spread of surface charge within a particle
population. This will again lead to increased deposition rate since the particles
bearing smaller charge will selectively be deposited from the suspension. This
hypothesis was exploited to interpret the data shown in Fig. 26. As can be noticed,
the theoretical calculations done by assuming a 0.35 relative S.D. of particle zeta
potential are in significantly better agreement with the experimental data.

On the other hand, the surface heterogeneity concept was exploited by Song et
al. [106] to interpret the experimental data of Litton and Olson [217] who
determined deposition efficiency in packed bed columns (using soda glass beads,
0.275 mm in diameter and positively charged latex particles, 0.245 pm in diameter).
In these experiments the ionic strength was kept constant, equal to 10~ M, while
the pH was varied within the limits 3.5-5.9 which resulted in a change of particle
zeta potential from 0 to —66 mV. The results shown in Fig. 27 exhibit the same
trend as previously, i.e. the measured deposition rates are much higher than
theoretical predictions. Moreover, the results were found dependent on the clean-
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Fig. 27. The single collector removal efficiency v, vs. pH of the suspension. The points represent the
experimental results obtained for latex particles (averaged diameter, 0.245 wm) adsorbing at glass beads
(diameter, 0.0275 cm) [106]. The solid line represents the theoretical results derived for a homogeneous
charge distribution and the dotted line shows the theoretical results predicted for a heterogeneous
charge distribution.

ing procedure of glass beads. These facts were explained by Song et al. [106] by the
existence of favourable surface sites on glass, probably composed of Al,O; and
Fe,O, which are expected to bear a positive charge at this pH range. As one can
notice in Fig. 27 the theoretical predictions calculated by assuming the surface
heterogeneity hypothesis (dashed lines) are in good agreement with experimental
data.

As can be concluded from the above results, in the case of barrier-controlled
deposition, the classical DLVO energy profiles calculated for homogeneous sur-
faces are not sufficient for a theoretical interpretation of experimental data.
However, a satisfactory agreement between theory and experiment can be attained
by accepting the heterogeneity hypothesis postulating that the DLVO theory is
valid in a local sense only, i.e. for a given surface area or a given particle. It seems
therefore, that in order to unequivocally characterize a barrier-controlled system,
more information is needed than just the averaged value of zeta potentials of
particles and the interface.

Unfortunately, up to our knowledge, there exists no systematic studies in the
literature concerning the influence of geometric heterogeneities (surface rough-
ness) on the initial flux of colloid particles. The experiments which relatively closely
match these conditions were reported in Adamczyk et al. [176]. These works were
concerned with deposition kinetics of larger polystyrene latex particles (averaged
diameter, 1.48 wm) at mica surface precovered (in prior deposition experiments)
with a given amount of smaller particles (averaged size, 0.68 wm). The degree of
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surface heterogeneity produced in this way was expressed in terms of smaller
particle surface coverage 0, = wa’N,, where a, is the smaller particle radius and
N, is their surface concentration. The results shown in Fig. 28 indicate that the
initial flux of larger particles falls abruptly when 6, increases. This behaviour,
analogous to the effect of the electrostatic barrier plotted in Figs. 26 and 27, is
caused by the electrostatic repulsion between equally charged smaller and larger
particles (the mica surface due to surface modification procedure described in
Adamczyk et al. [140] was positively charged in these experiments). As can be
noticed in Fig. 28, the numerical simulations performed according to the classical
two-dimensional RSA model for interacting particles deviate significantly from the
experimental data. This discrepancy, which could not be accounted for previously
[176] can be interpreted in terms of the steric barrier due to the presence of
preadsorbed smaller particles. However, in this case, the extension of the barrier
determined by smaller particle size was markedly smaller than the thickness of the
diffusion boundary layer of larger particles (equal to 1/Sh, in dimensionless units).
Hence Eq. (110) should be used for calculating the j/j, dependence for deposition
at precovered surfaces. Indeed, one can observe in Fig. 28 that the theoretical
results stemming from this equation (with Ka = 2.5 corresponding exactly to the
experimental conditions) are in good agreement with experimental data.

Certainly, additional experiments are needed in order to derive conclusions of a
general validity. Nevertheless, the data shown in Fig. 28 demonstrates that the
presence of smaller particles at the surface can exert a profound effect on
adsorption of larger particles. As discussed in Adamczyk et al. [218], the flux
reduction is expected especially pronounced for large size ratio of particles. This
suggests that in order to obtain reproducible results in particle deposition experi-
ments the surface cleaning procedure should be carefully controlled and the
presence of small colloid particles strictly avoided.

It should also be mentioned that in none of the above discussed experimental
results, no evidence of additional repulsive interactions was found, except for the
electrostatic interactions. This conclusion agrees with that formulated by Shubin
and Kekekicheff [43] on the basis of direct force measurements.

The limiting flux measurements discussed in this section can be used for
estimating the magnitude of the particle /interface interactions. The particle /par-
ticle energy profiles can be determined from kinetic measurements performed for
later adsorption stages when the steric interactions appear. These experiments are
discussed below.

5.3. Nonlinear adsorption kinetics

Most of the experimental results presented hereafter were obtained in the
stagnation-point flow cells using mono-disperse latex suspension and by applying
the direct optical microscope or AFM counting procedure. In an attempt to find
the experimental conditions closely matching the RSA assumptions the cell was so
oriented that gravity was acting opposite to the interface [140—144,147,173]. More-
over, the particle size range and flow rate were also carefully adjusted in order to
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Fig. 28. The dependence of the reduced initial flux j/j, of larger particles on the surface coverage 6, of
smaller particles preadsorbed at mica. The triangles and squares denote experimental results obtained
in the impinging jet cell [176] for polystyrene latex suspension (larger particle size, 1.48 pwm; smaller
particle size, 0.68 wm; [ = 107*, Re = 4), the circles denote the simulation results stemming from the
two-dimensional RSA model and the solid line represents the results calculated from Eq. (110) using
the steric barrier concept.

reduce the diffusion boundary layer thickness and to avoid the hydrodynamic
scattering effects. Typical kinetic curves measured under these circumstances for
various ionic strength are shown in Fig. 29 (averaged particle size 0.88 wm, Re = 8,
bulk suspension concentration n, = 4.4 X 10® cm™?, impinging-jet cell [48]).

One can observe that for initial deposition stages (6 < 0.1) the slop of the
kinetic curves (particle flux) decreases with ionic strength in accordance with
previous discussions (see Fig. 23). On the other hand, for longer adsorption times
an opposite situation can be observed, since the deposition rate is the smallest for
I =10"° M. In the latter case the adsorption rate becomes apparently negligible
after reaching the surface coverage of 0.26. It should be noted that the two-dimen-
sional RSA simulations performed by assuming the LSA model with energy
additivity principle describe adequately the experimental adsorption kinetics for
the entire range of deposition time and ionic strength.

Very similar trends were observed in the kinetic measurements of Johnson and
Lenhoff [210] performed by the AFM method using the amidine latex particles
(mean diameter, 0.116 pm) adsorbing at freshly cleaved mica. The results shown in
Fig. 30 demonstrate unequivocally that the coverage attained after longer adsorp-
tion time are considerably increased for higher electrolyte concentration. Due to
limited accuracy for low coverage range the differences in kinetic curves for
6 < 0.1 cannot be easily distinguished.
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Fig. 29. Adsorption kinetics of latex particles (diameter, d = 0.94 wm) on mica measured experimen-
tally using the impinging-jet cell for various ionic strength, ie. (1) IT=10"% M; (2) T =10"* M;
I =107 M. The solid lines denote the smoothened MC-RSA simulations.

Analogous results were obtained by Johnson and Elimelech [219] who studied
latex deposition in columns packed with soda glass beads (particle diameter, 0.48
wm, pH = 5). It was deduced from kinetic break-through curves determined by the
depletion method that the adsorption rate at initial stages was larger for lower
ionic strength (/ = 107> M). However, the column break was attained much
earlier for this ionic strength, than for I = 10~ M which was interpreted by lower
saturation coverage of the glass surface. It was shown that the experimental results
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Fig. 30. Adsorption kinetics of positive latex particles (averaged diameter, 0.116 wm) on mica under
natural convection conditions measured using the tapping mode AFM [210]: (1) T =5 x 1073 M; (2)
I=10°M;3) I=10"*M; W) I=3x10"° M.
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Fig. 31. Adsorption kinetics of latex particles (diameter, 0.94 pm) on mica measured in the impinging-jet
cell at Re = 8. The solid lines show the MC-RSA simulations performed for: (1) I = 1073 M; (2)
I=107"*M;@3 I=12x10"° M.

can well be interpreted in terms of the RSA model [with the B(®) blocking
function] whereas the Langmuir model proved inadequate.

Further evidence of the validity of the RSA model for characterizing protein
adsorption was reported by Ramsden [220].

One can conclude when analysing the data shown in Figs. 29 and 30 and other
results [48] that the suspension ionic strength is exerting a profound affect on
particle adsorption kinetics and surface coverage attained after long adsorption
time. However, one should remember that according to the RSA model, the
maximum coverage are attained very slowly, i.e. as 7~ !'/% (cf. Eq. (120b)). One
should expect, therefore, that for longer times the 6 vs. 77!/ transformation
(where T = m a?j,t, and j, being the experimentally determined limiting flux)
should be more appropriate for expressing the experimental data if the RSA
mechanism is valid. The experimental results obtained for (0.94 pm in diameter)
latex particles [48] are plotted using this transformation in Fig. 31. As can be seen,
the 6 vs. 77!/? dependencies become indeed linear for 7> 1 with the slope
decreasing monotonically with the decrease in ionic strength. Note also that the
numerical RSA simulations are in good agreement with the experimental data for
all ionic strength studied.

The good agreement of the experimental data shown in Figs. 29 and 31 with the
classical RSA model is probably due to the fact that due to forced convection the
diffusion boundary layer thickness was fixed at a value comparable with particle
diameter, hence Ka was close to unity. Under such circumstances the overall
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blocking function B(6) can be expressed according to Eq. (110) as

B(0) = KaB(0) = B(0) (122)

Since B(6) stemming from the DRSA model is slightly smaller the B(6) (calcu-
lated from the RSA model) and Ka is slightly larger than unity, the product of the
quantities can be close to the blocking function of the classical RSA model, given
by Egs. (90)-(93).

However, for lower Re flows or for small particles the deviations from the RSA
model are expected to become more pronounced. They should be the largest for
small coverage (short adsorption time) where the experimental accuracy is limited.
Thus, a precise determination of these deviations seems rather difficult although
they were observed qualitatively in Adamczyk et al. [221] for Re = 0.6 (micrometer
size particles) and in Bohmer et al. [174] for nanometer sized particles.

The 6 vs. t~!/% transformation was also used in the above mentioned work of
Johnson and Lenhoff [210]. The data shown in Fig. 32 suggest that for deposition
time exceeding 1 h, the 6 vs. ™!/ kinetic curves resemble straight line dependen-
cies. This behaviour is rather unexpected since in these experiments, carried out
under diffusion controlled regime the bulk flux is supposed to decrease with time
as t'/2. Then, by combining this with Eq. (120b) one can expect that for long
times

0, — 0~ 1/t =y /2

This indicates that the 6 vs. ¢~ '/? dependence should be non-linear (parabolic)
for long times. The discrepancy between this result and the Johnson and Lenhoff
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Fig. 32. Adsorption kinetic of latex particles on mica determined by AFM under the natural convection
transport conditions [210]: (D I=5X 103 M; QI =103M; 3D I=10"*M; 4D T =3x10"° M.
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data is probably due to the appearance of natural convection for long deposition
times. This will fix the thickness of the diffusion boundary layer and prevent the
bulk flux from decreasing indefinitely with time.

It seems that furthermore, more precise experiments are needed for an unam-
biguous determination of deposition kinetics under diffusion-controlled regime and
for assessing the range of validity of the RSA and DRSA models in these
processes.

5.4. The maximum coverage

From a practical viewpoint, more interesting then these subtle differences in
deposition kinetics, are the maximum coverage 0,,, attained after longer deposi-
tion times, which can be used for estimating an interface ‘capacity’ per unit area.
One can, however, deduce when carefully examining the results shown in Figs. 31
and 32 that determining 6,,, for colloid particles without knowing any theoretical
model would be difficult. This is so because deposition times needed to attain the
surface coverage close to 6,,, become prohibitively long, e.g. in the experiments
shown in Fig. 31 the maximum times exceeded 16 h. Experiments carried out for
such long times are less reliable due to likely contamination of the surface due to
impurities present in the suspensions. Obviously one can reduce this value by using
more concentrated suspensions. However, the accuracy of experiments will be
significantly reduced in this case, especially when the indirect methods are used
with the drying procedure.

Another complication associated with 6,,, determination is of a more fundamen-
tal nature. One should remember that unlike 6,,, for hard particles which has a
unique value, in the case of interacting particles, 6,,, is dependent not only in
electrostatic interactions but also on particle transport mechanism and particle
distribution over an interface. Also the polydispersity of the colloid suspension
would significantly increase the 6, . values [222]. All these effects lead to deviation
of the 6 vs. T dependencies from linearity, hence a direct extrapolation of the
kinetic data to infinite time may not be accurate enough. Even with this limita-
tions, which are expected to be of the order of percent, the extrapolation proce-
dure is more accurate than the usually adopted method of treating the coverage
attained after a long (but undefined) time as true 6,,, value.

The determination of 6,,, for proteins was first attempted by Feder and Giaever
[223] who used ferritin (globular protein having almost spherical shape of diameter
of approx. 10 nm). Even by using highly concentrated saline solution (0.15 M) the
authors were unable to reach the limiting value of 0.547, characteristic for hard
spheres. They have determined 6,,, within the range 0.2—0.5. This discrepancy can
be accounted for by the RSA model since according to Eq. (95), 6,,, should be 0.35
for ka = 12.5, corresponding to the experimental conditions of Feder and Giaever.

Experimental results concerning colloid particle adsorption are more abundant.
Onoda and Liniger [224] determined 6,,, for large polystyrene particles (diameter,
2.95 pm) adsorbing on glass slides, modified by adsorption of cationic polyacryl-
amide. Particle deposition occurred under gravity (sedimentation) and the drying
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procedure was used before particle counting. The jamming coverage was found to
be 0.55, in an ideal agreement with theoretical predictions for the RSA model for
hard particles. However, if one considers the gravity effect, the theoretical 6, value
should increase to 0.61 [225,226]. It seems, therefore, that the agreement with the
RSA model is due to compensation of the sedimentation, ionic strength (which was
not controlled) and polydispersity effects as discussed in Adamczyk et al. [222].
Similar, gravity driven deposition was studied in Adamczyk et al. [227] using the
sedimentation cell and polymeric (melamine) particles with a size of 1.68 pm and
specific density 1.5 g cm 3. The influence of the ionic strength, varied between
5 %X 107% and 107 M, when 6,, was systematically studied. It was found that the
maximum coverage dependence on I can well be described by Eq. (95) with the
hard particle value 6, equal to 0.61.

There are numerous experimental results concerning the 6,,, determination for
diffusion controlled transport conditions like the above mentioned work of Bohmer
[175] who studied various latex suspensions (with particle diameter varied between
9 and 90 nm) using the reflectometric method and Johnson and Lenhoff [210] who
used the AFM method. The effect of the ionic strength varied between 3 X 10~°
and 5 107 M on 0, was systematically studied in this work. On the other
hand, the micrograph technique was used for studying diffusion-controlled adsorp-
tion of 0.3- and 1-wm latex particles on mica [228] for ionic strength changes
between 107% and 2 X 107> M.

Harley et al. [214] used the above TFFDSEM method to determine the effect of
the ionic strength of suspension on 6,,, in the case of deposition of small,
negatively charged particles (diameter ranging from 0.116 to 0.696 pm) on posi-
tively charged latex, 2.17 wm in diameter. They measured a systematic decrease in
0,,, from 0.1 for the smallest particles and lowest ionic strength to 0.45 for the
largest particles. However, 6,,, was expressed as the ratio of the number of
particles adsorbed to the maximum number of particles which can be accommo-
dated at the surface of the larger sphere assuming a close hexagonal packing. This
may lead to an ambiguous interpretation since for the particle /particle problem
the undeformed hexagonal packing is not possible due to curvature effects.

A similar problem of determining 0,,, as a function of ionic strength for the
small /large sphere configuration was experimentally studied by Vincent et al. [183]
by using the indirect, concentration depletion method.

For the sake of convenience most of the above discussed data were collected in
Fig. 33. In order to facilitate the comparison between results obtained under
various deposition conditions (when 6, was also varied) the universal coordinate
system 0,, /6., vs. ka was chosen. The theoretical results stemming from the RSA
simulations performed using the LSA model are also shown in Fig. 33 together
with the analytical results calculated from Eq. (95) by assuming the EHP concept
(solid line). It should be noted that in the latter case the theoretical data for
ka <5 can only be treated as an approximate since the large ka assumption
pertinent to the EHP model breaks down for this range of ka. One can observe in
Fig. 33 that the experimental data are in fairly good agreement with theoretical
predictions although, for ka > 5, the 6,,, derived from experiments are generally
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Fig. 33. The ‘master’ graph showing the collection of experimental data concerning the maximum
coverage (0,,./6.) dependence on ka: e, Johnson and Lenhoff data [210] obtained by AFM under
natural convection; A, Adamczyk et al. [227] obtained in situ optical microscopy under gravity
(sedimentation); v, Adamczyk and Szyk data [228] obtained by in situ microscopy under natural
convection; M, Bohmer et al. data [174] obtained by reflectometry in impinging-jet cell; 4, Harley et al.
data [214] obtained by electron microscopy (TFFDSEM method), the empty symbols show the theoreti-
cal simulation data (obtained by the Monte-Carlo RSA method for T = 10 — squares and T = 105 —
triangles). The solid line represents the analytical approximation given by Eq. (95).

smaller than theoretically predicted. These deviations are most likely due to limited
experimental time of deposition measurements and lack of the extrapolation
procedure discussed above. This hypothesis is supported by the fact that theoretical
data obtained from simulations after T = 10 (which would correspond to physical
deposition times of the order of hours) reflect the lower branch of experimental
results well.

On the other hand, a proper theoretical interpretation of experimental results
for ka < 5 would require a true three-dimensional modelling of particle deposition
process with appropriate expressions for the many-body electrostatic interactions.
An attempt in this direction was undertaken by Oberholtzer et al. [89] who
considered the true three-dimensional particle transport in a force field stemming
from adsorbed particles and the interface. Since the authors still used the LSA
approach (generalised for the two particle /interface configuration as previously
mentioned) the deviation from the two-dimensional RSA simulations in respect to
6,,, was found not to be significant.

Obviously there is need for additional theoretical studies in this field although a
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proper consideration of the many-body electrostatic interaction at interfaces may
pose considerable difficulties.

In any case, the classical RSA approach seems to work well from a practical
point of view [range of ka (5-100)] agrees well with the experimentally found
effect of considerable decrease in the 6, for lower ka (low ionic strength).

6. Conclusions

The analysis of experimental evidences collected under well-defined conditions
confirmed the thesis that electrostatic interactions play an essential role in adsorp-
tion and deposition phenomena of colloid particles. For the low coverage regime
the limiting flux of particles, j, is considerably increased by the attractive elec-
trostatic interactions, especially for low ionic strength and larger Pe number. This
behaviour can quantitatively be interpreted in terms of the convective diffusion
theory using the DLVO Type I energy profiles. One can expect, therefore, that the
measurements of the limiting flux can be used for estimating the magnitude of the
particle /interface interactions.

For Type II energy profiles (an energy barrier present), significant deviations
from theoretical predictions were found in experimental works. The discrepancy
can be accounted for by assuming the surface heterogeneity hypothesis or by
considering the spread of surface properties within particle populations. This
enabled one to conclude that for barrier-controlled systems the DLVO theory is
applicable in a local sense only, i.e for a given surface area or for a concrete
particle. Therefore, in order to unequivocally characterize these systems one
should not only know the averaged surface potential values but also their distribu-
tion over the surface or within particle population.

Particle deposition kinetics for later stages can be quantitatively interpreted in
terms of the exclusion effects (called traditionally blocking effects) enhanced by the
electrostatic repulsion between adsorbed and moving particles. In contrast to
previous approaches, these blocking effects are treated as true three-dimensional
phenomena extending into the bulk. Thus, the effect of particles deposited (irre-
versibly adsorbed) at the surface becomes analogous to the presence of an energy
barrier of extension comparable with particle diameter whose magnitude increases
with coverage. This concept enables one to formulate proper boundary conditions
for the bulk transport problems and to introduce the generalised surface blocking
function B(0) defined by Eq. (99). It was predicted that B(8) should become
similar to the previously used B(6) function (derived, e.g. RSA simulations) for
Type II energy profiles (which can also be realized by external force acting
outwards from the interface).

Additionally, the concept of three-dimensional blocking phenomena proved
advantageous for describing the coupling between the near-surface transport
affected by deposited particles and the bulk transport. The overall transport rate in
this case is characterised by the function B(6) defined by Eq. (112) with the
Ka = 1/2S8h,q, rate constant being a crucial parameter (cf. Eq. (113)). It was
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deduced that for Ka > 1 (small Sk, corresponding to small colloid particles or
proteins), the influence of the blocking effects on particle deposition can be
neglected until the maximum coverage 6, , is approached. Then, the overall
blocking function B(6) becomes equal to KaB(6). Thus, for practical purposes the
6,,, values, affected by the electrostatic interactions, are of primary significance. It
was also predicted that the influence of the blocking effects and electrostatic
interactions is the most important for Ka close to unity, which can be realized in
practice for micrometer-sized particles under moderate flow conditions.

These theoretical predictions were confirmed quantitatively by experimental
data obtained for model latex suspensions. It was found that the classical RSA
model remains useful for describing deposition kinetics of particle sizes of around
micrometres under not very vigorous flows. The deviations from the RSA model
occurring for smaller particles or very low Re (diffusion controlled deposition) can
be accounted for by the coupling effect, expressed by the B(6) function.

It was also found that the RSA approach reflects well the experimentally found
decrease in the maximum coverage 6,,, due to lateral electrostatic interactions
(described approx. by Eq. (95)).

It should be mentioned that in none of the experimental results discussed above,
any evidence of additional repulsive interactions was found, except for the elec-
trostatic interactions. This conclusion agrees with that formulated by Shubin and
Kekekicheff [43] on the basis of direct force measurements.
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