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Abstract
We formulate a joint statistical model for two variables: one of them is either a count
variable or just zero, and the other is a regular count variable. We consider a modelling
framework based on switching between a bivariate Poisson regression model and
a univariate one, where the switching depends on the observable outcome of the
third, dichotomous variable. The ZIP–CP bivariate model (proposed quite recently)
and the standard univariate Poisson regression model are used as basic elements of
the switching (or mixture) model. Bayesian analysis is advocated; in two special
cases of our Bayesian statistical model, consequences for inference are discussed. The
empirical part is devoted to joint modelling of the numbers of cash payments and bank
card payments inPoland,with the use of data for both cardholders andnon-cardholders.
Our Bayesian statistical test enables to examine whether it is appropriate to analyse
each of two subsamples separately in order to infer on basic parameters. In the case
of our data it is so, therefore inference on individual parameters is not affected by the
sample selection error. However, inference on the correlation coefficient between two
count variables is possible only within the proposed trivariate model.

Keywords Bivariate Poisson regression model · Zero inflated Poisson model ·
Bayesian inference · Count data models · Bank card payments · Cash payments

1 Introduction

Modelling univariate count data by means of Poisson type regression models is nowa-
days a routine approach, and some competingmodel specifications have been proposed
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for bivariate count data as well (see, e.g. Lambert 1992; Kocherlakota and Kocher-
lakota 1992; Cameron and Trivedi 1998, 2005; Berkhout and Plug 2004; Famoye and
Singh 2006; Lee et al. 2009; Winkelman 2008; Famoye 2010; Tsou 2016). It is worth
mentioning that many empirical studies apply negative binomial regression because of
the nature of count data. Multivariate count data occur in a wide range of applications,
including accident analysis, sports statistics, economics, and many others (see e.g.
Brijs et al. 2004, 2006; McHale and Scarf 2007; Ma et al. 2008; Baioa and Blangia-
rdo 2010; Bermúdez and Karlis 2011; Shahtahmassebi and Moyeed 2016). Bayesian
inference has sometimes been used in these applications. There are several approaches
to the construction of the model for bivariate count data. The bivariate Poisson dis-
tribution based on the trivariate reduction method is restricted due to only positive
correlation between two count variables (see Kocherlakota and Kocherlakota 1992;
Brijs et al. 2006; Famoye 2010). Another approach is to model the joint distribution
using copulas (see Van Ophem 1999; McHale and Scarf 2007); these models allow
for more flexible specification of the dependence structure. Also, relatively flexible
dependence structures appear in the models built upon the idea of the mixture of inde-
pendent Poisson distributions (Aitchison and Ho 1989) or the conditional probabilities
(Berkhout and Plug 2004). The models for multivariate count data are discussed in
greater detail in, e.g. Cameron and Trivedi (1998) and Winkelman (2008).

In this paper we look at bivariate Poisson type regressions in the case when some
observations follow a degenerate (i.e. univariate) distribution. Since a bivariate model
for two non-degenerate count variables is the central part of our specification, we focus
on some particular structure, following a simple and flexiblemodelling path, started by
Berkhout and Plug (2004), which seems easy to generalize to dimensions higher than
2. However, our goal is to consider the possibility of degenerate bivariate observations,
and not to propose one more new specification for related count variables.

In joint modelling of count variables we may face the situation when one of them
is necessarily zero for many observed units. For example, if we analyze determinants
of (and relation between) the numbers indicating how many times during a month
people used public transport and how many times they used their own cars, then for
any person without a car the number of using it is necessarily zero. It becomes crucial
to examine the opportunities and consequences of inference (on determinants of using
public transport and on the relationship between using public transport or private
cars) on the basis of full data set in comparison to inference based on the data for car
owners only. Using the latter means sample selection, which makes any generalization
unjustified. In order to use all observations on two variables of interest, we propose
a statistical model with switching between two specifications for count variables: a
bivariate model and a univariate model. Switching is based on the third, zero–one
variable (car ownership in the example above). Such approach enables to formulate
testable hypotheses, e.g. that the mechanism generating values of the count variable
which is always observed (never degenerate) is exactly the same in two groups of
observed units.

The main part of the switching model, introduced in this paper, is a bivariate model
of count variables representing the case where both variables are non-degenerate. We
use the so-called ZIP–CP (zero inflated Poisson–conditional Poisson) specification,
proposed by Marzec and Osiewalski (2012); it is a bivariate Poisson type regres-
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sion, more general than P–CP (Poisson–conditional Poisson) model, introduced by
Berkhout and Plug (2004). In the P–CP model, one of the variables is marginally
Poisson and the other is conditionally Poisson. This model can be easily estimated
and it allows correlation of any sign, but the sign of correlation between the two
count variables depends on the sign of one parameter only and is independent of the
explanatory variables of the model. In the ZIP–CP model of bivariate Poisson type
regression, the marginal ZIP type distribution is used for the first variable (instead of
the marginal Poisson distribution), which leads to the covariance sign dependent on
the explanatory variables. The characteristics of the ZIP–CP model follow from the
properties of the bivariate discrete ZIP–CP distribution, introduced and examined by
Osiewalski (2012). The second part of the switching model proposed in this paper
amounts to a univariate Poisson regression for the second variable—in case when the
first variable is degenerate (with its full probability mass concentrated at zero). As it
has been alreadymentioned, the third part is a dichotomous specification that describes
switching between the bivariate (non-degenerate) and univariate (degenerate) case.

In the next section we present the probabilistic foundations of our switching model,
i.e. the discrete distributions used to build the three parts of this model—in particu-
lar, the ZIP–CP distribution. Section 3 is devoted to our statistical model, the form
of the likelihood function and the Bayesian analysis. Section 4 contains an empiri-
cal illustration, showing new results of joint modelling of the numbers of bank card
and cash payments. In contrast to previous studies—see Polasik et al. (2012a) and
Marzec and Osiewalski (2012)—we use all available data, for cardholders and non-
cardholders. Our empirical example that refers to the research on non-cash transactions
in Poland—see Polasik andMaciejewski (2009), Polasik (2015), Polasik et al. (2012b)
and Goczek and Witkowski (2015, 2016)—serves as an illustration of modelling and
inference problems with count variables, where one of them (the number of card pay-
ments) is degenerate for many observations (individuals without cards). In Sect. 5
concluding remarks are stated.

In the literature dealing with multivariate regression models we can find a variety
of approaches to deal with dependent variables analyzed simultaneously of which
at least one is partially observed. The practice of omitting data, also referred to as
data selection, has been often used. For example, exploiting a dataset of over 11,000
payments, Bounie and Francois (2006) estimated the determinants of the probability of
a transaction being paid by cash, check or bank card at the point of sale; a multinomial
logit model was applied in their study. They excluded persons who did not hold
bank cards or check accounts. The next simplification amounts to using variables
which ignore the nature of the data. Kalckreuth et al. (2014) employed probit models
for dependent variable. Although these practices seem useful, because they simplify
the statistical modelling problem, they do not reflect the complexity of consumer
behavior. From the viewpoint of statistical inference, such simplified approaches may
be inappropriate, as we show in this paper. Stavins (2016) stated that “estimating
consumers’ decisions to adopt and use payment instruments as independent events
can lead to sample-selection problems”.

The aim of this paper is to present a new approach to payment behavior analysis
by a tailor-made model, which is designed to cover all available observation units,
e.g. consumers with or without cards. The advantage of our specification is that the
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proposed trivariate model can capture salient features of the original data set. This
modeling approach is free from the sample selection error and it allows to test for
possible misspecification due to sample selection.

2 Probabilistic foundations of the new statistical model

We consider the joint distribution of three random variables (Y1, Y2, Y3), where the
third one is a zero–one variable, the second variable can take any non-negative integer
value, and the first one is concentrated at zero when Y3 �0 (Pr{Y1 �0|Y3 �0}�
1), and can take any non-negative integer value if Y3 �1. Thus, when Y3 �0, the
conditional distribution of (Y1, Y2) is the same as the distribution of (0, Y2) and
corresponds to the univariate distribution of Y2. Only when Y3 �1 the distribution
of the pair (Y1, Y2) is a bivariate distribution over the set of all pairs of non-negative
integers; now we focus on its two special cases: P–CP (Berkhout and Plug 2004) and
ZIP–CP (Osiewalski 2012). These distributions lead to particularly simple and useful
bivariate Poisson type regression models. Other specifications impose restrictions on
the correlation between twocount variables or aremore complicated from the statistical
or numerical perspective.

If Y3 �1, the probability distribution of (Y1, Y2) is as follows:

Pr{Y1 � i, Y2 � j |Y3 � 1} � Pr{Y1 � i |Y3 � 1}
Pr{Y2 � j |Y3 � 1,Y1 � i} � g(i) h( j, i), (1)

where i, j ∈ N ∪ {0}. If the distribution of Y1 is Poisson with mean (and variance) λ1
and the conditional distribution of Y2 given Y1 is Poisson with mean (and variance)
λ2exp(αY1), i.e.

g(i) � exp(−λ1)(λ1)
i/i! , h( j, i) � exp[−λ2 exp(α · i)](λ2) j exp(α · i · j)/ j! ,

(2)

then we have the bivariate P–CP distribution with the following moments (Berkhout
and Plug 2004):

E(Y2|Y3 � 1) � λ2 exp[λ1(e
α − 1)], (3)

E((Y2)
2|Y3 � 1) � E(Y2|Y3 � 1) + [E(Y2|Y3 � 1)]2 exp[λ1(e

α − 1)2], (4)

Var (Y2|Y3 � 1) � E(Y2|Y3 � 1) + [E(Y2|Y3 � 1)]2{exp[λ1(eα − 1)2] − 1}, (5)

E(Y1Y2|Y3 � 1) � λ1e
αE(Y2|Y3 � 1). (6)

If α ��0, then the variance (5) of Y2 is greater than its expectation (3). The dependence
between the twovariables leads to the inflated variance ofY2,which is usually observed
in empirical count data. The Poisson distribution of Y1 does not have this crucial
property. This is the first reason to generalize the bivariate P–CP distribution through
replacing the marginal Poisson distribution of Y1 by a ZIP type distribution—in line
of the approach presented by Lambert (1992), Cameron and Trivedi (1998, 2005)
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and Winkelman (2008). The second reason to generalize the P–CP model lies in its
restrictive approach to the dependence between two count variables, as the sign of
covariance between Y1 and Y2, i.e. of

Cov(Y1, Y2|Y3 � 1) � E(Y1Y2|Y3 � 1)

− E(Y1|Y3 � 1)E(Y2|Y3 � 1) � λ1(e
α − 1)E(Y2|Y3 � 1), (7)

depends only on the sign of the real constant α, and not on λ1 or λ2, which are param-
eterized through explanatory variables in statistical applications of this probabilistic
model.

ThegeneralizationproposedbyOsiewalski (2012) allows for dependenceof the sign
of covariance on λ1 as well. This more general class of bivariate discrete distributions
(denoted with a star) is characterized by the same conditional distribution of Y2 given
Y1:

Pr∗{Y2 � j |Y3 � 1,Y1 � i} � h( j, i) � Pr{Y2 � j |Y3 � 1,Y1 � i} (8)

and by the ZIP-type distribution of Y1, with zero treated separately:

Pr∗{Y1 � i |Y3 � 1} � g∗(i) �
{

γ f or i � 0,
1−γ

1−g(0)g(i) f or i ∈ N ,
(9)

where γ belongs to the (0, 1) interval, and g and h are the same functions as in (2).
If γ �g(0), then Pr*{Y1 � i|Y3 �1}�g*(i)�g(i)�Pr{Y1 � i|Y3 �1} and we are
back in the P–CP case. If γ >g(0), then the distribution of Y1 is of the ZIP type, so
we call the joint distribution ZIP–CP. However, note that the specification (9) is more
general as it also allows γ <g(0).

The moments of the ZIP–CP distribution are related to the moments of the P–CP
case through the following general formula (assuming 0m �1 for m �0):

E∗(Ym
1 Yn

2 |Y3 � 1) � g0[(1 − γ )E(Ym
1 Yn

2 |Y3 � 1) + (γ − g(0)) 0m

E(Yn
2 |Y3 � 1,Y1 � 0)], (10)

where g0 � (1 − g(0))−1.
In particular:

E∗(Y1|Y3 � 1) � g0(1 − γ )E(Y1|Y3 � 1) � g0(1 − γ )λ1, (11)

E∗(Y 2
1 |Y3 � 1) � g0(1 − γ )E(Y 2

1 |Y3 � 1) � g0(1 − γ )λ1(1 + λ1), (12)

E∗(Y2|Y3 � 1) � g0[(1 − γ )E(Y2|Y3 � 1) + (γ − g(0))λ2], (13)

E∗(Y 2
2 |Y3 � 1) � g0[(1 − γ )E(Y 2

2 |Y3 � 1) + (γ − g(0))λ2(1 + λ2)], (14)

E∗(Y1Y2|Y3 � 1) � g0(1 − γ )E(Y1Y2|Y3 � 1) � g0(1 − γ )λ1e
αE(Y2|Y3 � 1),

(15)

Var∗(Y1|Y3 � 1) � 1 − γ

1 − g(0)
λ1

(
1 +

γ − g(0)

1 − g(0)
λ1

)
, (16)
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Var∗(Y2|Y3 � 1) � 1 − γ

1 − g(0)

{
Var (Y2|Y3 � 1) +

γ − g(0)

1 − g(0)
[E(Y2|Y3 � 1) − λ2]

2

+
γ − g(0)

1 − γ
λ2

}
, (17)

Cov∗(Y1, Y2|Y3 � 1) � 1 − γ

1 − g(0)

{
Cov(Y1, Y2|Y3 � 1) +

γ − g(0)

1 − g(0)
λ1[E(Y2) − λ2]

}
,

(18)

which leads to the correlation coefficient of the form

Corr∗(Y1, Y2|Y3 � 1)

� Cov(Y1, Y2|Y3 � 1) + γ−g(0)
1−g(0) λ1(E(Y2|Y3 � 1) − λ2)√

λ1

(
1 + γ−g(0)

1−g(0) λ1

){
Var (Y2|Y3 � 1) + γ−g(0)

1−g(0) (E(Y2|Y3 � 1) − λ2)
2 + γ−g(0)

1−γ
λ2

} ,

(19)

where E(Y2|Y3 �1), Var(Y2|Y3 �1) and Cov(Y1, Y2|Y3 �1) are the moments of the
P–CP distribution in (3), (5) and (7). After simple manipulations we obtain

Cov∗(Y1,Y2|Y3 � 1) � (1 − g(0))−2(1 − γ )λ1
[
(1 − g(0))eαE(Y2|Y3 � 1)

−(1 − γ )E(Y2|Y3 � 1) − (γ − g(0))λ2
]

� (1 − e−λ1 )−2(1 − γ )λ1λ2
{ [

(1 − e−λ1 )eα − (1 − γ )
]

exp(λ1(e
α − 1)) − γ + e−λ1

}
. (20)

Now it is clear that the variables (Y1, Y2) that follow the ZIP–CP distribution

1. are negatively correlated, if [(1− e−λ1 )eα − (1−γ )] exp(λ1(eα −1)) < γ − e−λ1 ,
2. are positively correlated, if [(1− e−λ1 )eα − (1− γ )] exp(λ1(eα − 1)) > γ − e−λ1 ,
3. are uncorrelated, if [(1 − e−λ1 )eα − (1 − γ )] exp(λ1(eα − 1)) � γ − e−λ1 .

When γ �g(0)�exp (−λ1), i.e. if Y1 is Poisson (under Y3 �1), the complicated
formulas (18) and (20) reduce to the much simpler form (7), where the sign of covari-
ance depends only on the sign of α. In other cases, i.e. when Y1 is of ZIP type, the sign
of covariance in (20) depends on the values of λ1 and α (not only on the sign of the
latter constant). Obviously, the value of covariance in the ZIP–CP distribution (and
not only its sign) as well as the value of the correlation coefficient (19) depend on all
the constants appearing in the ZIP–CP probability function, i.e. on γ , λ1, λ2 and α.

Remind that increasing the probability of the zero value of Y1 (in comparison to
the Poisson distribution with mean and variance λ1), that is assuming the ZIP type
distribution with γ >g(0), leads to variance (16) greater than expectation (11). The
ZIP–CP distribution class enables inflating variances of both count variables, although
they are not symmetrically treated.

As yet our considerations has been focused on the conditional distribution of the
pair (Y1, Y2) given Y3 �1, that is on the complicated part of our trivariate structure.
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The distribution of Y2 given Y3 �0 (and the only possible zero value of Y1) is specified
in such a way as to make it easy to test in our statistical model whether the conditional
distribution of Y2 given Y1 �0 is the same in both situations: Y3 �0 and Y3 �1.
Therefore we assume the Poisson distribution with the probability function

Pr{Y2 � j |Y3 � 0} � Pr{Y2 � j |Y3 � 0, Y1 � 0} � h0( j) � exp(−λ2,0) (λ2,0)
j/ j! ,
(21)

with λ2,0 possibly different from λ2.
Summing up all the assumptions we have already introduced, we propose the fol-

lowing joint distribution of three discrete variables:

Pr{Y1 � i, Y2 � j, Y3 � l} �
⎧⎨
⎩

p g∗(i)h( j, i), i, j ∈ N ∪ {0}, l � 1,
(1 − p) h0( j), i � 0, j ∈ N ∪ {0}, l � 0,
0, i ∈ N , j ∈ N ∪ {0}, l � 0,

(22)

where p �Pr{Y3 �1}. The marginal distribution of the pair (Y1, Y2) is a particular
mixture of the bivariate ZIP–CP distribution and the univariate Poisson distribution:

Pr{Y1 � i,Y2 � j} � p g∗(i)h( j, i) + (1 − p)I{0}(i)h0( j), i, j ∈ N ∪ {0}, (23)

where IA(·) denotes the characteristic function of the setA; the moments can be written
as:

E(Ym
1 Yn

2 ) � p E∗(Ym
1 Yn

2 |Y3 � 1) + (1 − p) 0mE(Yn
2 |Y3 � 0,Y1 � 0), (24)

with E*(Ym
1 Y

n
2|Y3 �1) denoting the appropriate moment of the ZIP–CP distribution,

see (10), and E(Yn
2|Y3 �0, Y1 �0) coming from the Poisson distribution with param-

eter λ2,0.

3 The Bayesian statistical model

ConsiderT trivariate observations (Y1t ,Y2t ,Y3t ; t �1,2,…,T ), whereY3t are dichoto-
mous. For Y3t �1, pairs (Y1t , Y2t) have different ZIP–CP distributions, i.e.

Pr∗{Y1t � i, Y2t � j |Y3t � 1} � g∗
t (i)ht ( j, i) (i, j ∈ N ∪ {0}), (25)

where

Pr∗{Y1t � i |Y3t � 1} � g∗
t (i) �

{
γt f or i � 0,

1−γt
1−gt (0)

gt (i) f or i ∈ N ; gt (i) � e−λ1t (λ1t )i/i! ,

(26)

Pr∗{Y2t � j |Y3t � 1,Y1t � i} � ht ( j, i) � exp[−λ2t e
α·i ](λ2t ) j eα·i · j/ j! , (27)
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λ1t � exp(xtβ1), λ2t � exp(wtβ2), γt � exp(−eδλ1t ) � exp(− exp(δ + xtβ1)),
(28)

xt and wt are row vectors consisting of values of explanatory variables that determine
the probabilities of particular pairs of values of Y1t and Y2t . The role of the explanatory
variables depends on the column vectors of parameters β1 and β2, but also on the
dependence parameter α and the ZIP parameter δ, which governs the deviation of
Pr*{Y1t �0|Y3t �1} from the value corresponding to the Poisson distribution. Now
the moments of the distribution of (Y1t , Y2t) given Y3t , presented in the previous
section, depend on the explanatory variables.

The specification based on (26) is known in the literature as the hurdle model
(Cameron and Trivedi 2005, p. 680); Winkelman (2008) compares it to the original
ZIP model. The hurdle model form of our ZIP type specification is very simple, thus
making estimation and testing quite easy.

When Y3t �0, the pairs (Y1t , Y2t)� (0, Y2t) have degenerate distributions, where
for Y2t we assume Poisson distributions—as in (24); that is

Pr{Y2t � j |Y3t � 0,Y1t � 0} � h0,t ( j) � exp[−λ2t,0](λ2t,0)
j/ j! ,

λ2t,0 � exp(wtβ2,0). (29)

If β2 �β2,0, then Pr *{Y2t � j|Y3t �1, Y1t �0}�Pr {Y2t � j|Y3t �0, Y1t �0} and
the mechanism that generates values of Y2t given Y1t �0 is exactly the same, no
matter what the value of Y3t is. In order to test the hypothesis β2 �β2,0 we need a tri-
variate statistical model. Under our assumptions, this model amounts to the following
parametric class of distributions:

Pr{Y1t � i, Y2t � j,Y3t � l; θ} �
⎧⎨
⎩

pt g∗
t (i) ht ( j, i), i, j ∈ N ∪ {0}, l � 1,

(1 − pt ) h0,t ( j), i � 0, j ∈ N ∪ {0}, l � 0,
0, i ∈ N , j ∈ N ∪ {0}, l � 0,

(30)

where pt � Pr{Y3t � 1} � 1 − F(−ztβ3), zt is the row vector of explanatory
variables and F is the distribution function representing the particular dichotomous
model for Y3t . In the empirical section we use the logit model, i.e. we assume that F is
the distribution function of the logistic distribution. Other models of the dichotomous
variable Y3t are worth considering, especially the one based on the skewed Student
t distribution, which Osiewalski and Marzec (2004a, b) introduced as a relatively
general alternative for the logit and probit specifications. In our statistical model for
the triple (Y1t , Y2t , Y3t) the parameter vector θ is a column grouping δ, α, β1, β2,
β3 and β2,0. We assume that, for any θ , trivariate observations are stochastically
independent.

When Y1t �y1t , Y2t �y2t and Y3t �y3t (t �1,2, …, T ) have been observed, the
likelihood function takes the form
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L(θ ; y) �
⎡
⎣ ∏
t : y3t�1,y1t�0

γt ht (y2t , 0)

⎤
⎦

⎡
⎣ ∏
t : y3t�1,y1t>0

1 − γt

1 − gt (0)
gt (y1t ) ht (y2t , y1t )

⎤
⎦

⎡
⎣ ∏
t : y3t�0,y1t�0

h0,t (y2t )

⎤
⎦

⎡
⎣ ∏
t : y3t�1

pt

⎤
⎦

⎡
⎣ ∏
t : y3t�0

(1 − pt )

⎤
⎦

� L1(β1,β2, α, δ) L2(β2,0) L3(β3), (31)

where y denotes the (3 × T ) matrix of the observed values of Y1t , Y2t and Y3t . The
first two products in (31) correspond to the bivariate component of the mixture model
and form the function L1 of δ, α, β1, β2; the third product in (31) corresponds to
the univariate Poisson component and is the function L2 of β2,0; the fourth and fifth
products in (31) correspond to the dichotomous switching variable and constitute the
function L3 of β3. If there is no relation among these three groups of parameters, then
inference on each of them can be conducted separately, using only the appropriate
function Lr (r �1, 2, 3) instead the full likelihood function. The situations of “no
relations” or their presence can be precisely formalized within the Bayesian statistics,
where a probabilitymeasure (prior distribution) on the parameter space is defined, prior
independence between parameters can be formally stated and posterior independence
can be considered. Here we focus on two situations: the case of prior independence
among the three groups of parameters and the case of β2 �β2,0.

Under the separability of the likelihood function, obvious from (31), prior indepen-
dence among (δ, α, β1, β2), β2,0 and β3 leads to their posterior independence, which
means complete separability of inference on each group of parameters. In this case,
using only observations with y3t �1 for estimating (δ, α, β1, β2) is fully justified
as well as using only observations with y3t �0 for estimating β2,0 alone. Obviously,
inference on such functions of θ that involve parameters from different groups, e.g.
on Corr(Y1t , Y2t |θ )—the unconditional correlation coefficient between the first two
elements of the triple (Y1t , Y2t , Y3t), must be based on the joint posterior density of θ ,
p(θ |y), which uses the full likelihood function and complete data. The joint posterior
is needed if one wants to compare the unconditional correlation coefficient Corr(Y1t ,
Y2t |θ ) and the conditional one, Corr(Y1t , Y2t |Y3t �1, θ )�Corr*(Y1t , Y2t |Y3t �1, δ,
α, β1, β2), derived in the ZIP–CP model using formula (19).

In the case of β2 �β2,0, when (given Y1t �0) Y2t is explained in exactly the same
way no matter what Y3t is, L1 and L2 in the likelihood function cannot be considered
separately as both depend on β2. In this case inference has to be based on all data, the
full likelihood and the joint posterior. Making inferences with the use of the data with
y3t �1 only would mean sample selection error. Of course, testing β2 �β2,0 requires
the general model, without this restriction.

Complete specification of our Bayesian statistical model [with the sampling distri-
bution (30) that leads to the likelihood function (31)] requires the prior distribution of
θ . Obviously, our prior choice is related to the model structure, not to the data that are
analysed in the empirical part.We assume prior independence and the standard normal
priorN(0, 1) for each parameter. Zero prior expectations mean that the simplest model
(with no ZIP effect, no dependence and no explanatory variables) gets the highest prior
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chance, but unitary standard deviations ensure significant prior chances for specifica-
tions being far from the simplest one. It seems that such simple joint prior distribution
introduces little initial information and guarantees easy Monte Carlo simulations of
the posterior distribution. Obviously, sensitivity of inferences with respect to the form
of the prior distribution is an empirical question, to be answered for the data at hand,
but it is of greater importance mainly in small data-sets. According to basic Bayesian
asymptotic results, under any regular prior, the posterior based on a sufficiently large
number of observations can be approximated by an appropriate multivariate normal
distribution centred at the maximum likelihood estimate. Thus, in empirical studies
based on large data-sets, sensitivity with respect to the prior distribution becomes
much less important.

In this study we implement the random-walk Metropolis–Hastings MCMC algo-
rithm to simulate samples from the posterior distribution of θ (Gamerman 1998). This
algorithmwas started either at zero values of the parameters or at maximum likelihood
estimates obtained by estimating each sub-model separately (due to separability of the
likelihood function). It turned out that the selection of starting values was not impor-
tant for convergence. We generated a candidate random variable from a multivariate
Student distribution; preliminary runs were used to calibrate its precision matrix. The
algorithm involved 1,000,000 cycles, and the acceptance rate was about 10%. Con-
vergence of single chains from the MCMC sampler was confirmed by the graphical
procedure proposed by Yu and Mykland (1998).

4 Joint modelling of the numbers of card and cash payments

In order to illustrate the empirical usefulness of the proposed statistical model, we use
the data collected for the research that was financed by the National Bank of Poland
and described by Polasik et al. (2012a) and Marzec et al. (2013). The data consist
of the information whether person t is a cardholder (y3t) as well as the number of
his/her cash payments (y2t) and card payments (y1t) within a month. T �2518 persons
were questioned in October or November 2010, or in January 2011. The fraction of
cardholders was 47.3%.

Frequency distributions of the numbers of cash payments for y3t �1 and y3t �0 are
presented inTable 1. For non-cardholders, the average number of cash payments during
a month was 22.5 (with the empirical standard deviation 19.8); for cardholders, the
average number of cash payments during a month was lower: 20.5 (with the empirical
standard deviation 17.3). The valueW2 �10.9 of themodified test statistic ofAnderson
and Darling (1954) indicates dissimilarity of these two discrete distributions. For
cardholders, the average number of card payments during a month is 5 (with standard
deviation 6.7); the empirical correlation coefficient between y1t a y2t (given y3t �1)
is 0.008, which indicates no linear dependence.

The results obtained by Polasik et al. (2012a)—within the P–CPmodel on the basis
of the data for 1190 cardholders—showed very small positive correlation between
the numbers of cash and card payments. Marzec and Osiewalski (2012) confirmed
this using the ZIP–CP model, indicating at the same time that the P–CP model is
not a valid reduction of the more general ZIP–CP case, as both parameters α and
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Table 1 Frequency distributions of the numbers of cash payments y2t for cardholders (y3t �1) and non-
cardholders (y3t �0). Source: Own calculations

Number of cash
payments y2t
(interval)

Number of
cardholders (t such
that y3t �1)

Frequency Number of
non-cardholders (t
such that y3t �0)

Frequency

0 24 2% 0 0%

(0; 5] 126 11% 60 5%

(5; 10] 248 21% 275 21%

(10; 15] 196 16% 224 17%

(15; 20] 148 12% 208 16%

(20; 25] 108 9% 151 11%

(25; 30] 85 7% 123 9%

(30; 35] 66 6% 73 5%

(35; 40] 55 5% 57 4%

(40; 45] 32 3% 55 4%

(45; 50] 32 3% 26 2%

>50 70 6% 76 6%

Sum 1190 100% 1328 100%

Mean 20.5 – 22.5 –

Median 16 – 18 –

δ are significantly different from zero. Note that univariate empirical distributions
for cardholders only (i.e. with y3t �1) require a bivariate model with inflated zeros
for both count variables; the ZIP–CP specification meets this requirement, while the
P–CP model does not. Moreover, for cardholders, formal Bayesian model comparison
led to the conclusion that, in the ZIP–CP, model Y1t must represent the number of
card payments and Y2t—cash payments (not vice versa); see Marzec and Osiewalski
(2012). The necessity of establishing which count variable is the first one comes from
the asymmetric structure of the bivariate model under consideration.

Now we present the results obtained for the full dataset, which includes non-
cardholders. Similarly as Marzec and Osiewalski (2012), we have modelled raw data,
without weights indicating the degree of representativeness of individual observations;
such weights were used by Polasik et al. (2012a) and Marzec et al. (2013). The moti-
vation to use weighted (adjusted) data amounts to adequately represent the population
from which the sample has been drawn. Information about demographic characteris-
tics, such as gender, age, marital status, and place of residence, are used to develop the
weights. In this paper we model raw data, as we do not focus on representativeness
issues.

The structure of our complete trivariate model—shown in Fig. 1—consists of two
separate count variables models: for T1 �1190 pairs (Y1t , Y2t) with Y3t �1 and for
T2 �1328 variables Y2t if Y3t �0, as well as of the specification for the dichotomous
variable Y3t that links all T �T1 +T2 �2518 observations. The same main character-
istics of the questioned individuals are used as explanatory variables in all three parts
of our joint model, that is xt �wt � zt .
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Is an individual a cardholder?

Yes (Y3t=1) No (Y3t=0)

Cash payments (Y2t≥0) 
or card payments (Y1t≥0)

Only cash payments 
(Y2t≥0 and Y1t=0)

Including only cash payments 
(Y2 t≥0 and Y1t=0)

Fig. 1 The structure of the full trivatiate statistical model. Source: authors’ elaboration

Table 2 Typical (average or most frequent) values of explanatory variables. Source: authors’ elaboration

Explanatory variable T �2518 T1 �1190 T2 �1328
All observations Cardholders Non-cardholders

Gender (1—man, 0—woman) 0 0 0

Age (years) 41.2 40.1 42.2

Marital status (1—married, 0—not married) 1 1 0

Residence (1—city, 0—countryside) 1 1 1

Monthly income (thousand PLN) 2.9 3.3 2.5

Education (years of schooling) 12.3 13.2 11.5

Access to Internet at home (1—yes, 0—no) 1 1 0

In Table 2 we present the typical values of our explanatory variables, i.e. the most
frequent values for zero–one variables and the arithmetic means for other variables.
It seems that the main determinants of having a bank card are: income, education,
marital status and the access to Internet at home. The role of the access to Internet and
marital status, as well as of the place of residence, is also suggested by the information
presented in Table 3 (i.e. the fraction of ones in the case of dichotomous explanatory
variables). We assume that the access to Internet is a proxy variable for consumer
openness to technology adaptation.

In our empirical research we have used the statistical model presented in (30),
together with the joint prior distribution, proposed in the previous section and assum-
ing independence among all parameters of the trivariate model. Taking advantage of
posterior independence, which results from the separability of the likelihood in (31)
and prior independence, we have used three independent Metropolis–Hastings chains
in order to simulate from the posterior distribution in each part of our model. That
is, we have separately estimated (β1 β2, α, δ) in the ZIP–CP model (M1), β2,0 in the
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Table 3 Fraction (%) of ones in the case of dichotomous explanatory variables. Source: authors’ elaboration

Explanatory variable T �2518 T1 �1190 T2 �1328
All observations Cardholders Non-cardholders

Gender (1—man, 0—woman) 44 45 42

Marital status (1—married, 0—not married) 56 65 48

Residence (1—city, 0—countryside) 63 71 56

Access to Internet at home (1—yes, 0—no) 61 76 49

Poisson model for the number of cash payments for non-cardholders (M2) and β3 in
the logit model M3. The total number of parameters is 34.

In Table 4 we present the posterior means and standard deviation of all individual
parameters; the results are printed in bold if the absolute value of the posterior mean
is greater than two posterior standard deviations.

Referring to the assumed prior distribution of parameters, we see that our N(0,
1) priors appear relatively vague in this application, because the posterior standard
deviations are much lower than the prior standard deviations and almost all posterior
means are in the interval (−2, 2), and most of them in [−1, 1]. We checked that our
results are robust to changes in the prior distribution. On the other hand, in studies
(like ours) where the number of observations is large, prior sensitivity becomes much
less important.

For cardholderswe see (inM1) that all seven explanatory variables thatwe have used
are obviously important to explain the number of cash payments. But only the access
to Internet, education and income significantly (and positively) affect the number of
card payments. In the pure Poisson model for non-cardholders (M2), not all seven
variables are important to explain the number of cash payments—gender, income and
age are not. Our results show that a cardholder’s education, being in a marriage and
the access to Internet have a negative effect on cash payments. Note, however, that the
impact of these three variables on the number of cash payments is positive for non-
cardholders. Living in a city will lead to more frequent use of cash as the payment
method for both consumer types. Additionally, there is significant positive influence
of age only on cash payments in the case of cardholders. In the logit model (M3),
five variables (except for gender and age) are the determinants of possessing a bank
card. We confirmed that being in a marriage, living in a city, having higher income,
staying in education for a longer period and having the access to Internet increase the
probability of having a bank card.

Let us stress the differences between posterior distributions of the parameters
describing the number of cash payments inM1 andM2. In the case of four explanatory
variables (marital status, income, education and the access to Internet), the signs of
the posterior means are different. As the standard deviations of most of the parameters
are small, we suspect that the equality β2 �β2,0 does not hold.

In order to verify the hypothesis β2 �β2,0 we use a Lindley-type Bayesian test
(similar to the highest posterior density interval test, see Lindley 1965 p. 58; Zellner
1971, pp. 298–302). Let κ =β2−β2,0; building upon the classical F or Chi squared
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0 5 10 15 20 25 30 35 40
τ (κ ; y )

Fig. 2 Posterior distribution of τ (κ ; y). Source: authors’ calculations

tests, we consider the following quadratic form (see also Osiewalski and Steel 1993;
Marzec and Osiewalski 2008):

τ � τ(κ ; y) � (κ − E(κ | y))′(V (κ | y))−1(κ − E(κ | y)), (32)

whereE(κ |y)�E(β2|y)–E(β2,0|y) andV (κ |y)�V(β2|y)+V(β2,0|y); the sumof covari-
ance matrices is a result of posterior independence between β2 and β2,0 in the general
model (without any restrictions). Univariate variable τ is random as a function of both
the observations and parameters of our Bayesian model. Inferences on τ are based on
its posterior distributionwith the density function p(τ |y). In our Lindley-type approach,
testing the restriction κ =0 amounts to checking whether the value τ (0; y) belongs to
the region of the highest posterior density p(τ |y) and the close to one posterior proba-
bility mass. If so, we do not reject the hypothesis κ =0 and go to the model based on
this restriction, which unables the separate analysis of two subsamples (of cardholders
and non-cardholders). If τ (0; y) is outside the highest posterior density region, then
the equality κ =0 is not supported by the data—so we reject it and stay with the results
obtained in the general, unrestricted model.

In Fig. 2 we present the posterior density p(τ |y). The value τ (0; y)�973.85 lies
far in the tail of the posterior distribution of τ , so the equality β2 �β2,0 is strongly
rejected. Thus, for our dataset, inferences (on individual parameters) based on the
separability of the likelihood in (31) are free from any sample selection error.

Finally we present the posterior results for the conditional and unconditional corre-
lation coefficients between the numbers of card and cash payments (Y1t , Y2t). Remind
that the unconditional correlation coefficient Corr(Y1t , Y2t |θ ) is a function of all
parameters of the three sub-models, so its posterior distribution can be obtained only
in the joint trivariatemodel, irrespectively of the outcomeof the testwehave considered
above. In Table 5 we present main results. For all data (T �2518) we have obtained the
posterior distributions of the unconditional correlation coefficientCorr(Y1t ,Y2t |θ ) that
were concentrated close to zero—but only on the positive side. Theminimumposterior
mean was 0.031, the maximum was 0.16 and the average posterior mean was 0.072
(always with a relatively small posterior standard deviation). It means that the uncon-
ditional correlation between the numbers of card and cash payments is very small,
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Table 5 Posterior means of correlation coefficients between (Y1t , Y2t ), averaged over observations. Source:
authors’ calculations

Correlation coefficient Average posterior mean

Corr(Y1t , Y2t |θ ) 0.072 (for T �2518)

– Cardholders (Y3t �1) Non-cardholders (Y3t �0)

Corr(Y1t , Y2t |θ ) 0.065 (for T1 �1190) 0.079 (for T2 �1328)

Corr(Y1t , Y2t |Y3t �1, θ ) 0.073 (for T1 �1190) –

but positive. In the ZIP–CP model—for the cardholders only—the average posterior
mean of the conditional correlation coefficient Corr(Y1t , Y2t |Y3t �1, θ ) was 0.073.
The overall average estimate of the unconditional correlation coefficient is practically
the same as the average estimate of the conditional correlation coefficient given y3t �
1, although the specific average estimates ofCorr(Y1t , Y2t |θ ) obtained for cardholders
and non-cardholders are quite different.

5 Concluding remarks

The trivariate discrete distribution and Bayesian statistical model have been proposed
in order to jointly model two count variables in the case where one of them can
be degenerate. Our statistical model amounts to using a zero–one variable to switch
between two separate models for count variables. The first model is bivariate and the
second one is only univariate—but from the same class as the conditional part of the
bivariate model. While the proposed modelling scheme is quite general, the choice
of the sub-models (the building blocks of the trivariate structure) is rather specific
and can be changed. Simplicity is the main criterion in choosing the ZIP–CP model
(as the bivariate specification for count variables) and the logistic model (for the
zero–one switching variable); both lead to a tractable trivariate model. Replacing the
logistic part by a different dichotomous specification—e.g. based on a skewed Student
t distribution and allowing for interactions of explanatory variables (see Osiewalski
and Marzec 2004b)—is not difficult and may improve the data fit. However, replacing
the ZIP–CP specification, which is the main part of our trivariate model, would be
much more difficult. Using alternative structures for two related count variables is left
for future research.

As far as the prior specification is concerned, our particular form of the prior
distribution can easily be changed, but two crucial properties should be kept in mind.
The separability of the likelihood function can be fully exploited only under prior
independence of parameters describing sub-models, so their independence is a natural
element of each prior specification. Also remind that particular, standard normal prior
distribution (that we have assumed for each individual parameter) is not important if
the number of observations is large—like in our empirical example. Obviously, small
samples would require sensitivity analysis within a larger class of prior distributions
(e.g. Student t with unknown degrees of freedom).
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In the proposed Bayesian model one can easily use our Lindley-type test (the
Bayesian counterpart of the F or Chi squared tests) in order to verify the fundamental
restriction, which makes the parameters describing the non-degenerate count variable
identical for both values of the switching zero–one variable. It would be interesting to
use formal Bayesian model comparison (through Bayes factors and posterior model
probabilities) for testing different specifications that could appear in future research.
This would require an efficient estimator of the marginal data density value in each
model. It seems that, in the case of the Markov Chain Monte Carlo simulations of
the posterior distribution, the corrected arithmetic mean estimator proposed by Pajor
(2017) is an appropriate tool.

Our trivariate model is constructed in such a way that separability of the likelihood
function is preserved. Thus it is a useful tool to examine the consequences of sample
selection caused by deleting all observations with only one non-degenerate count vari-
able (i.e. deleting the whole subsample of non-cardholders). In our empirical example
we have shown that inference on individual parameters is not affected by the sam-
ple selection error, since the restriction linking parameters of two sub-models is not
supported by the data. We have also shown that any deeper inference on correlation
between two count variables—that is, inference on the unconditional correlation coef-
ficient as opposed to the conditional one—is possible only within our full trivariate
specification.

Let us stress that the proposed trivariate model always enables making inference
for all available data, without applying any preliminary tests. Instead, our model itself
constitutes a useful testing framework, in particular for testing particular conditions
that lead to sample selection errors. This is the main contribution of the paper.
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