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1. INTRODUCTION

Most of multivariate volatility models used in financial econometrics either belong 
to the MGARCH or MSV (multivariate stochastic volatility or variance) classes or 
are based on copulas; see e.g. Bauwens, Laurent and Rombouts [1], Tsay [12]. These 
models are difficult to estimate; only a few of them could be practical tools for large 
portfolios. The ideal model should be both non-trivial and parsimonious. There are 
some candidates from the MGARCH class, e.g. the so-called “scalar BEKK” model and 
the Dynamic Conditional Correlation (DCC) structure of Engle [2]. In both cases one 
can use simple approximate methods (like variance targetting) in order to estimate 
the parameter vector of dimension growing with the portfolio size; the remaining 
parameters, which require more numerical effort, form a vector of fixed dimension 
(two) irrespective of the number of assets.

However, according to the Bayesian posterior odds criterion, MGARCH models do 
not explain the data as well as MSV specifications; see Osiewalski, Pajor and Pipień [6]. 
Latent AR(1) processes, used in the MSV class to describe volatility, are very efficient 
in dealing with outliers and, thus, in modelling tail behaviour. Since such modelling 
is crucial for any risk assessment, the MSV class should be kept under consideration 
in spite of the fact that reasonable MSV structures are too complicated to be practical 
in highly dimensional problems. Relatively easy, yet not trivial, multivariate volatility 
modelling is proposed by Osiewalski and Pajor [5], who define a hybrid model, based 
on Engle’s DCC structure and the simplest MSV specification, the Stochastic Discount 
Factor (SDF) model. This paper is devoted to other hybrid models, of the SDF – scalar 
BEKK form, and to their approximate estimation that should result in feasible Bayesian 
analysis for large portfolios.

We follow the Bayesian approach to statistical modelling and inference, presented 
by e.g. O’Hagan [4]. The details for Bayesian MGARCH and MSV models are given 
by Osiewalski and Pipień [7], Pajor [9], [10] and Osiewalski, Pajor and Pipień [6].

* The idea was presented at the 7th International Conference on Forecasting Financial Markets and 
Economic Decision-Making (Łódź, Poland; May 15-17, 2008) as well as at the 35th International Conference 
MACROMODELS’2008 (Gdańsk, Poland; Dec.4-6, 2008).
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Section 2 is devoted to simple MGARCH and MSV model structures, which are 
then combined in the new specification of section 3. Concluding remarks are grouped 
in section 4.

2. SIMPLEST BAYESIAN MODELS FROM THE MSV AND MGARCH CLASSES

Assume there are n assets. We denote by rt = (rt1 … rtn) n-variate observations 
on their logarithimc return (or growth) rates, and we model them using the basic 
VAR(1) framework:

 rt = d0 + rt–1 D + et; t = 1, …, T, … T + s, (1)

where T denotes the length of the observed time series and s is the forecast horizon. 
The n (n + 1) elements of d = (d0 (vec D)’)’ are common parameters, which can be 
treated as a priori independent of all other (model-specific) parameters; we can assume 
for them some multivariate prior, e.g. standard Normal N (0, In (n+1)), truncated by 
the restriction that all eigenvalues of D lie inside the unit circle.

2.1. THE STOCHASTIC DISCOUNT FACTOR (SDF) MODEL

Assume that et in (1) is conditionally Normal (given parameters and latent variables, 
grouped in q) with mean vector 0 and covariance matrix St that depens on latent 
variables, i.e.

et|q ~ N (0[1×n], St).

Thus, the corresponding conditional distribution of rt (given its past and q) is 
Normal with mean mt = d0 + rt–1 D and covariance matrix St. Competing n-variate 
MSV models are defined using different latent processes and different structures of 
St (symmetric and positive definite by construction). The simplest MSV specification 
uses only one latent process gt to describe the dynamics of the whole conditional 
covariance matrix (see Jacquier, Polson and Rossi [3]; g0 can be fixed, by assuming 
e.g. g0 = 1):

, , , , , , ., lng lng g iiN A iiN t s Z0 0 1[ ]t t t t t g t t n t t s1 1 d= = + =+ +f g z v h g h g h
#- _ ^ ^i h h

The conditional covariance matrix of et takes the very simple form St = gt A, which

leads to the invariable conditional correlation coefficient ;a a a,t12 12 11 22= =t t  A is
a free symmetric positive definite matrix consisting of n (n + 1)/2 distinct entries.

We can assume independence among parameters and use the same prior 
distributions as Pajor [10]; for f: Normal with mean 0 and variance 100, truncated 
to (–1, 1), for A–1: Wishart with mean In, for :g

2v-  Exponential with mean 200.
In principle, the n-variate Bayesian VAR(1)-SDF model can be analysed using Gibbs 

sampling as a tool for simulating samples from the posterior distribution. This is due 
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to the Wishart or Normal forms of the full conditional distributions of A and d, which 
make these steps of the Gibbs sampler easy even for large n. Other steps, numerically 
more demanding, do not depend on n; see Pajor [8], [9]. Despite its ease in practical 
applications, the SDF specification is too restrictive to be useful since it assumes the 
same dynamics for all entries of the conditional covariance matrix. This assumption 
seems too high a price to be paid for the ease of numerical implementation.

2.2. THE SCALAR N-BEKK(1,1) MODEL

Now we assume that the conditional distribution of et (given past, yt–1, 
and parameters) is n-variate Normal with mean vector 0 and covariance matrix  
Ht: et|q, yt–1 ~ N (0[1×n], Ht). For their bivariate MGARCH models Osiewalski, Pajor and. For their bivariate MGARCH models Osiewalski, Pajor and 
Pipień [6] assume the Student t distribution with location vector 0, inverse precision 
matrix Ht and v > 2 degrees of freedom, i.e. et|q, yt–1 ~ St (0[1×n], Ht, v). The use of the. The use of the 
Student t distribution instead of conditional Normality was a fully justified generalisation; 
see also Osiewalski and Pipień [7]. However, this more general specification adds 
numerical complexity, which is already high under n-variate Normality.

Particular n-variate GARCH models are defined by imposing different structures 
on Ht. Here we focus on a simple “scalar BEKK(1,1)” model as it can be easily 
estimated using approximate methods. It seems the simplest among multivariate 
structures allowing for dynamic conditional correlations. The scalar BEKK(1,1) case 
can be defined by

 ' ,H A H1t t t t1 1 1= - - + +b c b f f c- - -^ _h i  (2)

where A is a free symmetric positive definite matrix of order n, with e.g. an inverted 
Wishart prior distribution, and b and g are free scalar parameters, jointly uniformly 
distributed over the unit simplex. As regards initial conditions for Ht, we can either 
take H0 = h0 In and treat h0 > 0 as an additional parameter (a priori Exponentially 
distributed), or fix H0.

Although the scalar N-BEKK(1,1) specification is so simple, its Bayesian analysis 
cannot rely on a fully automatic Gibbs algorithm. The full conditional posteriors of the 
VAR(1) parameters are no longer of the Normal form as d also appears in Ht through 
the lagged VAR error terms. The full conditional posterior of A is not inverted Wishart 
as A is no longer the covariance matrix; it determines just one term of the sum defining 
the conditional covariance matrix in (2). The unwieldy form of the full conditional 
posterior for b and g is not a problem since they are scalar parameters. However, d and 
A are of high dimensions for large n and the use of Metropolis draws within the Gibbs 
steps (or using the Metropolis algorithm for all the parameters joinly) can be infeasible. 
Thus, any practical estimation tool must rely on some crude approximation when the 
analysed portfolio is very large. We can use OLS for the VAR(1) part and rely on 
variance targetting in order to estimate A; that is, A can be replaced by the empirical 
covariance matrix of the OLS residuals from the VAR (1) part. The Bayesian analysis 
for the two remaining scalar parameters and future return rates will then be based 
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on the conditional posterior and predictive distributions given the particular values 
of the highly dimensional parameters. We can use e.g. Monte Carlo with Importance 
Sampling for b and g, and (for prediction purposes) direct Monte Carlo from the 
conditional Normal distributions of future return rates. Note that sampling of future 
return rates is unavoidable when the forecast horizon s is greater that 1, because then 
the joint s-period predictive distribution (given the parameters and observed data) is 
not Normal (although each one-period-ahead conditional distribution is).

3. HYBRID “SDF – SCALAR BEKK” MODELS

We specify the conditional distribution of the residual process et by conditioning 
on its past (yt–1), some univariate latent process (gt) and the parameters. We assume 
in (1)

, , ' , ,lng lng g iiN I0/
t t t t t t g t t t n n

1 2
1 1 1 1= = + +f g z v h g hX

#- + +_ _ ]i ig6 @

that is, et in (1) is conditionally Normal with mean vector 0 and covariance matrix 
gt Wt, where Wt is a time-varying square matrix of order n that preserves the scalar 
BEKK structure. Again, g0 can be fixed as in the SDF model. We propose two par-
ticular forms of Wt.

In the type I hybrid model Wt = Ht, so it follows (2) and does not depend on 
the latent process. Now the conditional variances are equal to gt hii,t, that is they 
have a more general form than in either the SDF or scalar BEKK model, but the 
conditional correlation coefficient does not depend on gt and thus is of the BEKK 
form. Note that this generalised structure does not lead to the MGARCH form of the 
process / g*

t t t=f f  as Ht depends on et–1, not on .*
t 1f -

In the type II hybrid model we assume the MGARCH structure for / g*
t t t=f f ,  

i.e.

, ' .H H A H1* * * * *
t t t t t t1 1 1= = - - + +b c b f f cX - - -^ _h i

Now Wt depends on the whole past of the latent process, so do the conditional 
variances and correlation coefficients of et. Modelling of time-varying conditional 
correlation is no longer as simple as in the scalar BEKK or type I hybrid models.

Both hybrid models seem useful as they combine important properties of their main 
structural components. The presence of one latent AR(1) process in the conditional 
covariance matrix should help in explaining outlying observations, and the dependence 
on the past data (through the BEKK structure of Wt) prevents the entries of the 
conditional covariance matrix gt Wt from sharing the same dynamic pattern. Thus 
our models have time-varying conditional correlation without introducing more latent 
processes. In fact, the proposed hybrid models nest both basic structures. In the 
limiting case when sg ® 0 and f = 0 we are back in the BEKK model, while b = 0 
and g = 0 lead to the SDF case.

Assuming that the parameters of our hybrid specifications follow the same priors 
as in both special cases (SDF, BEKK), we can write the full Bayesian model as
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The first two densities enable direct Monte Carlo simulation of future gt and rt; given 
all the parameters and (gt, rt) from the observation period (t = 1, …, T), we successively 
draw ln (gT+j) and rT+j (j = 1, …, s) from their conditional Normal distributions. The 
last term, i.e. (3), is the joint density of the observed return rates, the T corresponding 
latent variables and all the parameters. The posterior density function, proportional to 
(3), is very complicated and highly dimensional. If n is large, the only hope to perform 
any Bayesian analysis is in the application of Gibbs sampling, which is based on full 
conditional distributions obtained from (3):
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Again, as in the case of the pure scalar BEKK structure, we are not able to perform 
exact Bayesian analysis for a high enough portfolio dimension n. The conditional 
posteriors of d and A, the parameters of dimension related to n, are non-standard. 
Using rejection sampling or the Metropolis-Hastings algorithm within these Gibbs steps 
would not be feasible for large n. However, we can still use the Gibbs sampling scheme 
(based on the full conditionals presented above) to propose some ad hoc approximate 
Bayesian approach. First of all, d is of no particular interest and obtaining its posterior 
distribution is not important, so we can condition on its values resulting from the 
application of OLS to the VAR(1) system. We also need some quick approximation 
for A, but this will be proposed later. As regards b and g, they can be sampled using 
the Metropolis-Hastings step within the Gibbs sampler.

Fortunately, the latent variables and parameters related to the SV component of 
the hybrid structure can be simulated in a similar way as in the pure SDF model, 
that is relatively easy. Under a Normal-Gamma prior for the pair , ,g

2{ v-` j  its bivariate 
conditional posterior is also of the Normal-Gamma form. And, most importantly, the 
univariate conditional posterior densities for ln (gt) do not look too different from 
the pure SDF case. In fact, it pays to use the full conditional of (gt)–1 as it involves 
a Gamma kernel. In the type I model we obtain
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where .d r rt t t t t t
1= - -n nX- l_ _i i  Since the log-Normal kernels can be approximated 

by some Gamma density, the Metropolis-Hastings steps have very efficient proposal 
density for (gt)–1; see Pajor [9]. In the type II model, the corresponding full conditio-
nal densities are more complicated due to the dependence of Wt on the past of gt; we 
have for t = 1, …, T – 1:
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The last product, which did not involve gt and thus was omitted in the type I model, 
is now a complicated function of gt. However, this term should be rather non-informative 
about gt and, therefore, using the similar Gamma proposal density as in the type I model 
should be the basis for efficient Metropolis-Hastings steps within the Gibbs sampler.

Conditionally on some simple estimates of the VAR(1) parameters, we can perform 
Bayesian analysis of large portfolios, provided that A, which is a large symmetric 
matrix, can be either sampled or fixed. For the type I model we suggest conditioning 
on exactly the same estimate as in the case of the pure BEKK structure. In the case of 
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the type II model we can try a different estimate within each Gibbs pass. Due to the 
MGARCH property of the process / g*

t t t=f f , we can use variance targetting and (at 
each Gibbs pass) estimate A by the empirical covariance matrix of , , , .t T1*

t = ff  Since 
this matrix is different at each Gibbs pass, we finally obtain a “sample” of reasonable 
estimates of A. This should give some idea about the location of the important part 
of the posterior of this matrix parameter, and thus should be better than just fixing 
it. However, if there are any convergence problems, we can use OLS residuals to fix 
A (as in the case of the pure BEKK or type I hybrid model).

4. CONCLUDING REMARKS

Any statistical analysis of a large portfolio requires compromises. It needs relatively 
simple (but non-trivial) multivariate volatility models. In addition, any Bayesian analysis 
has to partly rely on conditioning on particular parameters (using non-Bayesian 
estimates). However, there are promising classes of hybrid MGARCH-MSV structures, 
where one can use Bayesian inference on the most important model components: latent 
variables, deeper parameters and future returns. Note that our new specifications 
formally belong to the MSV class due to the presence of the latent AR(1) process 
describing multivariate volatility. But we use the term “hybrid models” in order to 
stress their difference from traditional “pure” MSV conditional covariance structures, 
which do not depend on past observations.

Before using the proposed approximate approach for very large portfolios, it should 
be compared to the full and exact Bayesian analysis in low dimensional situations. Also, 
the usefulness of our Bayesian model in the case of a heterogenous portfolio (consisting 
of very different assets, like bonds and equities) should be empirically checked.

Cracow University of Economics (Uniwersytet Ekonomiczny w Krakowie),
Andrzej Frycz Modrzewski Cracow University College (Krakowska Szkoła Wyższa im. 
Andrzeja Frycza Modrzewskiego)
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NOWE HYBRYDOWE MODELE WIELOWYMIAROWEJ ZMIENNOŚCI (PERSPEKTYWA BAYESOWSKA)

S t r e s z c z e n i e

W przypadku dużego portfela istniejące modele dynamicznej wielowymiarowej zmienności są albo zbyt 
proste z perspektywy finansowej, albo zbyt złożone z numerycznego punktu widzenia. W pracy proponuje 
się nową, hybrydową klasę modeli dla n-wymiarowych finansowych szeregów czasowych. Specyfikacje 
hybrydowe opierają się na dwóch prostych strukturach: modelu ze stochastycznym czynnikiem dyskontowym 
(stochastic discount factor, SDF) z klasy MSV i modelu skalarnym BEKK(1,1) z klasy MGARCH. W pracy 
definiuje się hybrydowe modele typu I i II; oba typy uwzględniają różną dynamikę każdej warunkowej 
wariancji czy kowariancji (jak w modelu BEKK) i zachowują tylko jeden proces ukryty w warunkowej 
macierzy kowariancji w celu opisu obserwacji odstających (jak w modelu SDF). Na potrzeby bayesowskich 
analiz a posteriori i predyktywnych zaproponowano podejście symulacyjne oparte na próbkowaniu Gibbsa 
oraz zasugerowano wersje przybliżone, nieuniknione w przypadku dużego n.

NEW HYBRID MODELS OF MULTIVARIATE VOLATILITY (A BAYESIAN PERSPECTIVE)

S u m m a r y

In the case of a large portfolio, the existing models of time-varying multivariate volatility are either 
too simple from the financial perspective or too complex from the numerical angle. Thus, in the paper 
a new hybrid class of models for n-variate financial time series is proposed. The hybrid specifications are 
based on two simple structures: the stochastic discount factor model (SDF) from the MSV class and the 
scalar BEKK(1,1) model from the MGARCH class. Type I and II hybrid models are defined; both allow 
for different dynamics of each conditional variance or covariance (like BEKK) and keep just one latent 
process in the conditional covariance matrix in order to describe outliers (like SDF). For the purpose of 
Bayesian posterior and predictive analyses, the simulation approach based on Gibbs sampling is proposed 
and approximations unavoidable in the case of large n are suggested.

Key words: Bayesian econometrics, Gibbs sampling, time-varying volatility, multivariate GARCH 
processes, multivariate SV processes.


