
The Global and the Local: The History of Science and the Cultural Integration of Europe. 
 Proceedings of the 2

nd
 ICESHS (Cracow, Poland, September 6–9, 2006) / Ed. by M. Kokowski. 

 

353 

 
Vladimir Kirsanov *  

 
Leibniz in Paris 
 

(1) Introduction: The scope of readings 

The extensive literature is dedicated to the Parisian period of Leibniz’s life, the main attention being 

focused on his mathematical discoveries and the invention of the calculating machine. The other 

aspects of his creative activity are known sufficiently less. This paper presents an attempt to fill this 

gap to some extent; it is a by-product of the work on preparing Leibnizian scientific manuscripts 

written in 1672–1676 during his stay in Paris,
1
 to publication. We will dwell mainly on manuscripts 

devoted to mechanics though it is worth mentioning that in this very time Leibniz has been interested 

in the more broad scope of physical problems, in particular in optics, astronomy, and in the vacuum 

technique. It should be added that in fact the variety of his interests was surprisingly great being far 

beyond the limits of scientific disciplines.  

In this respect the manuscript LH035, 08,39, ff. 151r,v is very instructive. It contains the list of 

subjects that have been of interest for Leibniz. We find there not only mathematical and physical 

problems but also many exotic items which were not so easy to decipher.  

For example, one of the items says: ―Hookii tornus dioptricus. Scriptura coelestis, Gaffarelli et 

Bangi. Tachygraphia Anglicana‖. Here Leibniz refers first to the works of Robert Hook, on grinding 

optical lenses and then he mentions two different authors well known in the 17th century by their 

semi-mystical books, Jacques Gaffarel (see: Gaffarel, J. Curiositez inouyes, sur la sculpture talismanique 

des Persians. Horoscope des Patriarches. Et lecture des Estoilles. Rouen: 1634) and Thomas Bang 

(see his book Caelum orientis et prisci mundi triade Exertationum Literarium Repraesentationem, curisque 

Thomae Bangi ... investigatum. Hauntiae: 1657). The next item clearly means English stenography 

that was becoming popular at that time.  

Another example: ―Signatura rerum. Crollius‖. It is a reference to the book of German jatrochemist 

Oswald Crollius: Oswaldi Crollii Basilica chimica. Pluribus selectis et secretissimis ... descriptionibus, 

et usu remediorum chym. selectissimorum aucta a Johanne Hartmanno. Lipsae: 1634.  

Leibniz further mentions other curious books coming back from time to time to his favourite 

subjects. Thus, in addition to Hooke’s works on technical optics he says about ―Wrenni hyperbola per 

tornum‖ without any doubt referring to a paper by Christopher Wren on hyperboloids and on methods 

of grinding glass hyperbolic surfaces published in 1669 (Wren, Ch. The generation of an Hyperbolical 

Cynindroid demonstrated, and application thereof to the grinding of Hyperbolical glasses. Philosophical 

Transactions, June 1669), and about ―Huddenianis Lentibus, physico artifico tornatis‖, that is about 

lenses made by Dutch scientist Jan Hudde who has been known for his construction of a microscope 

with spherical lenses (1663) and for his collaboration with Spinoza for producing lenses for a 

telescope. 

 Among scientific books mentioning in the list we find the Harmonices Mundi by Johann Kepler, 

and it is worth to note that Leibniz is interested in the mathematical section of the book devoted to the 

so-called tessellations (―Kepleri pars harmonica de figuris‖). This problem apparently is of great 

importance for him since he has placed it into a special item: ―Elegantes formae, quas singulari 

quodam delectu vitrarii et pavimentarii sive tessellifices sola dispositione conciliant‖; there is another 

Kepler’s book in the list also purely mathematical, it is the Stereometria doliorum. 

As far as the purely scientific problems are concerned, Leibniz is interested mainly in mechanics: 

the trajectory of a projectile and of a water jet, isochronism of a pendulum, the work of Archimedean 
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cochlea, waves on the water surface spreading from the thrown stone; optics: the passage of light 

through the border of two adjacent media, the origin of rainbow in particular; cartography: methods of 

making maps and projections of the plane map onto a spherical surface, convex and concave; crystallography; 

magnetic properties of solids and more. 

As to the subjects not belonging to science itself, the variety of his interests is really astonishing. 

Everything attracts his attention: lathes and grinding, looms and weaving manufacturing of silk 

stockings in particular, polishing of diamonds and other hard stones, problems of measuring and the 

measuring of Egyptian pyramids (here Leibniz refers to the book by English mathematician and 

egyptologist John Greaves: Pyramidographia or a Discourse of the Pyramids in Egypt. London: 1646), 

engraving, producing of typographic images, cards and chess, etc. As a separate item he also puts 

down the art of writing as well as the invention of the pen and methods of ciphering (―De complicatione 

literarum, deque modo ita complicandi, ut difficile sit aperire ignoranti, sine ullo sigillo‖). 

In all this variety of the subjects mechanics had a special place. When Leibniz came to Paris he 

was a novice in mechanical problems as he confirmed it himself on the margin of his summary of 

Galilean Discorsi: ―cum ista scriberam eram in his novus‖. And with the passion of a newcomer he 

started to make up for the lost time. It was known that Huygens at the meeting in the autumn 1672 

advised him to read mathematical works of Wallis and Saint Vincent, and probably the literature 

mentioned by Huygens contained the more extensive list of works, which would be necessary to read. 

Similar information Leibniz acquired from the constant personal contacts with his colleagues and from 

the vast correspondence. The great part in this matter played his visit to London and the acquaintance 

with Henry Oldenburg, Secretary of the Royal Society.  

In the first years of his stay in Paris, Leibniz apparently was busy mainly with mathematical 

problems as well as with his invention of the calculating machine, and he really turned to the study of 

mechanics somewhere between the end of 1673 and the beginning of 1675. In any case the above-

mentioned quotation belongs to the manuscript of the first half of 1675. In another manuscript dated 

by August 1673 and dedicated to the problem of the finding of the centre of gravity (also in 

connection with the Discorsi) he confirmed it once more: ―Haec cum scriberem nondum intelligebam 

quid esset centrum gravitatis.‖ The study of manuscripts collected in the volume 35 and 37 of 

Leibniz’s manuscripts showed that he very attentively read three books: Discorsi by Galileo, 

Mechanica by Wallis, and Traité de la percussion ou choc des corps by Mariotte.  

Among other books constantly mentioned in his manuscripts it is worth noting Mechanica Graeca 

by Aristotle, Hydrostatical Paradoxes and New experiments Physico-Mechanical by Boyle, De 

resistentia solidorum by Alessandro Marchetti, La Statique by Pardis, Abrégé des dix livres 

d’architecture de Vitruve by Perrault (here Leibniz was mainly interested in the section on simple 

machines), Traité de mechanique by Roberval, and Traité de physique by Rohault. 

The acquaintance with this literature was necessary for analysis of three major subjects which 

transformed afterwards into his first scientific papers on mechanics. Thus, the study of Galilean 

Discorsi gave him the impetus for the later article ―Demonstrationes novae de resistentia solidorum‖ 

published in Acta eruditorum in 1684. In the manuscripts of the Parisian period Leibniz already 

pointed to the mistakes of Galileo in the solution of the problem of the fracture strength of a beam. 

Later on he revised his earlier ideas more correctly. Galileo considered a beam as an absolute solid, 

which is broken in the place where the rupture stress exceeds the limit. In fact however no body is an 

absolute solid and we have to take into account its elastic and plastic properties. It was the reason why 

the calculations of Galileo did not comply with the later experiments made by Mariotte. And Leibniz 

in his article of 1684 introduced the elastic tension in order to meet the Mariotte’s data. 

Another major problem was the motion in resisting media. Some manuscripts of the Parisian 

period show that the basis of his theory has been laid in that very time; twelve years later these ideas 

have been transformed into his paper ―Schediasma de resistentia medii‖ (Acta Eruditorum, 1689). 

 The third problem concerned the possibility of perpetual motion and perpetuum mobile. In Paris 

Leibniz did not still come to a conclusion of impossibility to realize a perpetual motion and moreover, 

he was trying to work out a design which would be able to accomplish it. 
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(2.1) Perpetuum mobile with magnets 

Leibniz’s interest to the problem was quite natural: the 17th century abounded in attempts to construct 

such a mechanism, Leibniz as it followed from his manuscripts did not cease to be interested in this 

subject (even in the 80’s!) and while being in Paris he presented and discussed two variants of it what 

might be surprising to historians of science since afterwards, when Leibniz came to the more profound 

understanding of the conservation laws, he abruptly denied the possibility of existence of the 

perpetuum mobile. 

The description of the first design we find in the manuscripts LH037,05,ff.59v, 58r,v. We cannot 

definitely say that this construction is his original invention for there were a great number of similar 

machines at that time, and probably he borrowed the idea from someone else. In any case the design 

(fig.1) is the following: there is a wheel ABCD which can rotate around its centre A in the vertical 

plane. On two perpendicular diameters BD and CE there are four round holes, and the fifth hole is in 

the centre, all of these holes being of the same size. Between the holes, along the corresponding 

diameters Leibniz places glass tubes FG, HI, KL, and MN are filled with a liquid and hermetically 

sealed; a steel ball can freely move inside each tube, practically without friction. 

The initial position of these four balls (they are located in the points F, I, L, M correspondingly) 

resulted into the clockwise rotation. After a quarter of revolution has been made it is necessary for 

continuous rotation that the disposition of the balls would be the same as at the very beginning. For 

this purpose Leibniz places a magnet suspended to the horizontal diameter of the corresponding hole 

providing that the diameter itself can freely slide within the hole. 

 Leibniz first supposes that all magnets have the same force, and when the tube IH is in the vertical 

position, the ball in it is attracted by the extreme magnet O, which should have removed it from the 

central magnet Q because the distance HQ is bigger then OH. And vice versa: the ball in the vertical 

tube MN is attracted by the central magnet Q, which should have removed it from the extreme magnet 

E because the distance EN is bigger then NQ.  

Then Leibniz says that if the machine is in the position shown on the drawing, the balls located in 

I and M will acquire an impetus for the motion from C to D. Therefore, the part CDE will overweight 

the part EBC since the balls M and F are closer to the centre than the balls I and L, all other things 

being in equilibrium; then the ball I will move to N, and when the magnet passes from the position C 

to the position D (much more distant from it) it will not slide down back to H because of ―a certain 

curvature of the tube and because it might happen that the distance LP is not larger than HO‖ (fig. 2). 

Further, the ball I moves to N and from there it will be attracted to M; then it will pass to H and will be 

attracted to I, and so on. Thus the initial disposition of balls is being restored every time, and ―due to 

its own motion the machine will comes to a position that has been given to it by the initial impetus, 

and therefore the motion will continue‖. 

―I confess, adds Leibniz here, that this invention is most ingenious and magnificent but neverthe-

less I have eventually found that something is lacking in its foundation.‖ [It is the same phrase that 

makes us to suggest that Leibniz has not been author of this invention.] ―I maintain that the middle 

magnet, which might seem to support the perpetuity of the motion, in fact destroys it by a malicious 

compensation.‖ 

Leibniz assumes (fig.3) that since the magnet Q does not move, the distance M'Q between the 

magnet and the ball will increase during the transit of the tube MN from the vertical to the horizontal 

position, and the ball in the tube will roll down back. 

It should be noted here that this case is analogous to the case of rotation of the tube IH from C to 

D already discussed by Leibniz. Like in the first case we could say that the ball would not slide back 

due to ―a certain curvature of the tube‖ as well as due to the fact that the distance FQ always could be 

made shorter than QN. 

 Leibniz however prefers to ignore such reason. Instead, he begins to analyze what will happen if 

we put magnet Q in the very centre of the hole, or if we make the length of the tube greater; another 

variant is to increase the size of extreme holes and, at last, he discusses what will happen if we make 

the central magnet weaker than extreme ones. Leibniz comes to a conclusion that all these changes do 

not work: the ball continues to roll down back and the rotation ceases. 
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It is interesting to note that in this discussion he once mentions friction as an obstacle to the 

motion: ―the necessity of the magnets to change the place will considerably hinder the motion [for] in 

such a way they are continuously rubbed against the axes.‖  

In final part of the manuscript he deduced a formula by means of which we can find the proper 

diameter of the extreme hole providing that the force of magnet is inversely proportional to the 

distance: 

i
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or   

where (see fig. 4): h — diameter of the hole, a — force of the central magnet, b — force of the 

extreme magnet, c — length of the tube, c-d — radius of the central hole, e — distance between the 

upper magnet and the ball located in the lowest position, g — an excess of the attractive force of the 

upper magnet in comparison with that of the central magnet (for the ball located in the lowest 

position), i — an excess of the attractive force of the lower magnet in comparison with that of the 

central magnet (for the ball located in the lowest position). 

Having received this formula Leibniz just says that the greater h is the stronger will be the 

swinging of the magnets, that is the friction that will hamper the rotation. Therefore, he concludes, 

there is no doubt that everything at last will come to equilibrium. And this is not astonishing because 

two efforts of attraction are here, one to the centre of the earth, the other to the magnet, but both of 

them are continuously acting so that it is impossible to do nothing and to proceed not even in the least 

and nevertheless to act. 

Leibniz was clearly dissatisfied with this machine with magnets, and in the next manuscript he 

transformed it to construct a purely mechanical device. 

(2.2) Perpetuum mobile with elastic elements 

The manuscript LH037,05, ff.57r,v contains the description of the machine. It begins with the basic 

principle of constructing perpetuum mobile:  

the whole artifice of perpetual motion consists in finding the way of restoring the 

restoring force without using the force, which has to be restored. For that reason two 

forces have to be connected to each other in such a way that the restoring force acts 

separately whereby everything is compensated without affecting the machine. But this 

can happen in an admirable way. 

 The design suggested by Leibniz is the following (fig. 5): there is a tube AB divided in the middle 

C in two parts by an impenetrable partition. Within each part of the tube AC and CB a heavy ball can 

freely move. At the initial moment, the tube is placed in the horizontal position, the left ball being 

located near the centre C and the right ball — near the end of the tube B. It is clear that in this case the 

tube will begin to rotate clockwise, and when it comes to the vertical position, an elastic mechanism 

hidden in the tube will raise the boll upwards. If the tube crosses the vertical line, the motion will 

continue. 

Leibniz does not give the description of this elastic mechanism in detail but gives some hints how 

it can be constructed. In the middle of each half-tube he suspends a weight (H and G correspondingly) 

on a rigid pivot. While the tube is rotating from the horizontal to position to the vertical, every weight 

will also rotate but in respect to the tube and wind the spring connected with it. When the tube comes 

to the vertical position, the spring is released and drives a ball up. Thus both balls are simultaneously 

fixed in this new position. 

Leibniz further says that the spring could be released a little bit earlier than the tube crosses the 

vertical line; then ―everything will be as earlier but the initial disposition will be replaced by the 

opposite. And this reciprocation will be repeated without an end.‖ 

And if is desirable to get a continuous rotation in one direction, Leibniz suggests to join the second 

analogous tube perpendicularly to the first one, or even better — to arrange several tubes at the same 
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axis. Thus, in spite of the fact that Leibniz did not give the details of the design, he apparently 

believed that the machine would really work. 

(2.3) Perpetual motion: The problem of storing energy 

The third manuscript (LH037,05, ff. 92r,v; 93r) dedicated to the perpetual motion has an instructive 

title: A regular continuous motion due to irregular discontinuous agent, or the perpetual wind-clock 

(fig. 6). Here, Leibniz is trying to get a continuous motion by means of energy that is previously 

accumulated (for example, the potential energy of a lifted weight), providing that this energy is of 

natural origin (for example, the energy of wind). The idea of the machine is the following: Let us have 

a windmill that elevates (when the wind blows) a certain weight up to a certain height (for example it 

serves as a weight in a pendulum clock), and while it is sinking the windmill elevates another weight 

similar and equal to the first, to the same height. To realize this idea it is necessary to make the period 

of time during which the first weight is sinking from the upper point to the lower sufficiently great so 

that for this time the second weight can be elevated from the lower point to the upper, and it is 

necessary to invent a mechanism for the weight exchange.  

As far as the time is concerned, the problem is easy to solve, a week clock movement is a common 

thing, and one can be sure that in a week the wind will be able to lift the second weight to the proper 

height. Also Leibniz gives us some hints how the exchange mechanism should be constructed. 

The most interesting part in the whole design is its kinematical part, namely a device that 

transforms the rotation in every direction into the rotation in one direction. The point was that Leibniz 

rejected the commonly used design of a windmill with the oblique fixed wings in favour of strictly 

vertical wings. Let us have, — he writes, — the wheel abcd in the horizontal plane, which is half-

opened and half-closed. The opened side is abc and the closed — adc. The wings attached to it along 

the circumference are fixed in the points a, e, b, f, c, etc. and rotated by the wind.  

The next passage is especially curious:  

One of the sides is closed for the wind cannot produce its own work blowing simulta-

neously into opposite wings. For example, it the northern wind (which is blowing from b 

to d) simultaneously acts onto the wing a and onto the opposite wing c, so that the 

equilibrium there would emerge and there would be no reason for the rotation in any 

direction. In such a way a watermill is half-submerged only, otherwise it cannot be rotated 

by a current stream or it moves too slow. Thus I am wandering why we does not observe 

this at the work of common windmills.  

Let this wind-wheel has the axis gh which rotates together with the wheel abcd and moves the 

cogged wheel ilmn providing that it joined the cylinder mn which has the cogged discs at both of its 

ends. However, if we construct such a transmission, it will not work because the cogged discs at the 

ends of the cylinder (firmly connected to it) must be rotate in opposite directions when the cogged 

wheel rotates. Therefore the transmission should be supplemented by a device that makes the rotation 

possible, and Leibniz introduces such a device analogous to the modern ratchet. The cogs of these 

discs, he says, should be made in such a way (fig. 7) that they can move only in one direction, and 

after they have been deflected and let the cogs of the wheel to pass, they become straight again. For 

example, the cog op is moving around the centre o only to q, not to r due to the obstacle r, and if it is 

moved to q by some force, when it ceases to act, the dent will fall in the previous perpendicular position, 

by natural gravity. 

We can reconstruct the design of the transmission (fig. 8); here the cogged wheel W is joined to the 

cylinder C by means of cogged discs A and B, which are firmly fastened to the cylinder, and each disc is 

provided with above mentioned  ratchet. It is easy to see that if the wheel W rotates clockwise, it will 

catch the left disc A, while it will pass freely through the ratchet of the right disc B, therefore both discs, 

A and B together with the cylinder C will rotate clockwise (if we look at them right to left). And vice 

versa: if the cogged wheel rotates counter-clockwise, the disc B will be the working one and the disc A 

the idle; as a result the cylinder will rotate clockwise (if we look at it from right to left) again.  

Therefore, Leibniz concludes, the cylinder will always rotate in the same direction notwithstanding 

the rotation of the winged wheel. 
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In the remaining part of the manuscript he briefly describes the mechanism for the weight exchange: 

the principle part of it is presented by two chain transmissions, the first is a part of the clock, the 

second — of the windmill. There are two weights; when one is sinking, another is being elevated; the 

exchange takes place when the first weight reaches its lower point (the depository). At this very 

moment the second weight reaches its upper point and happens to be suspended on a special hook. As 

soon as the first weight touches the depository, an elastic element (or a spring) will release the second 

weight from the hook and it will pass to the first chain transmission. Simultaneously the second hook 

will catch the weight stored in the depository and start to lift it up. Leibniz does not give details 

concerning this ―elastic mechanism‖. 

This manuscript is remarkable not only due to Leibniz’s persistency in constructing the perpetuum 

mobile or to the ingenious transmission construction, but also because he nearly first time in the 

history of science presented the idea of the storing of energy. 

(3) The motion in resisting media 

The manuscripts LH035,IX,11, ff. 1r–13r; LH037,V, ff. 4r–12v written in 1675 are dedicated to the 

problem of motion in resisting media. It is well known that in 1689 Leibniz presented his results in the 

article entitled ―Schediasma de resistentia medii‖ and published in the January issue of the Acta 

eruditorum. When Newton got acquainted with this article (as well as with other two appeared in the 

same journal), he decided Leibniz had used there his own results published in the Principia. Later he 

wrote about it: 

In the Commercium Epistolicum, mention was made of three Tracts written by Mr. Leibniz, 

after a Copy of Mr. Newton’s Principia Philosophiae had been sent to Hannover for him; 

and after he had seen an Account of that book published in the Acta Eruditorum for 

January and February 1689. And in those Tracts the principal Propositions of that Book 

are composed in a new manner, and claimed by Mr. Leibniz as if he had found them 

himself before the publishing of the said Book. But Mr. Leibniz cannot be a Witness in 

his own Cause. It lies upon him either to prove that he found them before Mr. Newton, or 

to quit his claim.
2
 

In 1688 Leibniz wrote about it in the letter to Otto Mencke: 

Conclusions about the resistance of the medium which I have put on a special sheet, I had 

reached to a considerable extent twelve years ago in Paris.
3
  

In fact, in October 1687 Leibniz left Hannover with an important diplomatic mission for Italy and 

lived there about two years; he received Newton’s book in the middle of April 1689, two months later 

after his paper had been published in the Acta eruditorum. Without any doubt the Principia happened 

to give an impetus for his own work, because when Leibniz read the review of this book in another 

issue of the Acta, he hurried up to complete the investigations which he had started many years ago, 

the study of motion in a resisting medium including.  

Eric Aiton, in his paper 
4
 of 1972, analyzed the ―Schediasma de resistentia medii‖ in detail and 

proved on the basis of the manuscript drafts of this article that the leading method in this investigation 

was essentially infinitesimal. As a result he rewrote the Leibniz’s propositions and their proofs using 

the mathematical symbolism and demonstrated the adequacy of mathematical (in the manuscript 

drafts) and verbal (in the published paper) statements. Nevertheless the question whether Leibniz got 

his results ―twelve years before in Paris‖ still remains open.  

It is possible to answer this question through a detailed analysis of some manuscripts of April, 

May and December 1675 dated by Leibniz himself. First of all, however, it is worth adding an 

                                            
2 ―An account of the book entitled Commercium epistolicum…‖, Philosophical Transactions (1714) 29, p. 208. 

3 The Correspondence of Isaac Newton. Cambridge, 1961 v. III, p. 5. 
4 E. Aiton. ―Leibniz on motion in a resisting medium‖, Archive for History of Exact Sciences (1972) 9, pp. 

257 –274. 
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important remark. Like in the case of the invention of calculus (as we remember the leading notion for 

Newton was velocity while for Leibniz it was a characteristic triangle) in the case of resistance the 

initial approaches to the problem were different though the final results are identical. Newton understood 

the resistance of a medium as a kind of pressure at motion, while for Leibniz the main attention was 

focused on the interaction between the body and every single particle of the medium. It was the 

resistance of this particle to the mobile that he called absolute resistance. In the introductory part of his 

manuscript ―Du frottement‖
5
 Leibniz said that previous scholars tried to find the time-acceleration 

dependence while he believed that for studying the problem of friction it might be more useful to have 

the dependence between acceleration and the distance traversed. 

On the one hand, Leibniz saw no difference between the resistance mechanisms for the motion of 

a solid along the surface of another solid and for the motion of a solid in a liquid medium. In both 

cases the physical cause of the resistance is the friction of particles. In Parisian manuscripts he proposes 

different models of such resistance:  

When one body is moving along the other with a certain difficulty it is possible to 

imagine some points or obstacles on the surface of this second body which resist to the 

motion of the first; this obstacles can bend down and than draw themselves up, and one 

can represent this effect mechanically by means of a cog or a tooth on a hinge which can 

bend and restore its position due to some springs or levers.
6
  

One type of resistance he calls absolute and claims that it is not dependent on the velocity of the 

moving body; on the other hand, he stressed the existence of another kind of resistance, the respective 

resistance which depends on the impact of fluid on the body the more greater the stronger this force of 

impact is; in this case he believes that the resistance is proportional to the velocity. Twelve years later 

Leibniz worked out the correct and clear explanation for both types of resistance in his ―Schediasma 

de resistentia medii‖ but in 1675 he had already possessed these notions to a great extent. 

 Eric Aiton in the above-mentioned paper explained in detail their essence having concluded that  

Leibniz’s theory of absolute resistance in fact corresponds to Newton’s theory of resistance 

proportional to velocity and his theory of respective resistance corresponds to Newton’s 

theory of resistance proportional to the square of velocity. 

For the present discussion it is important to stress the point that the absolute resistance as Leibniz 

understood it is a characteristic of the individual particle; if a body moves on the surface of another 

body, the total action of all such particles, which the body encounters along its path, will be proportional 

to its velocity, that is, to the distance traversed. It is the reason why Leibniz is seeking the dependence 

between distance and velocity. 

Les us turn now to Leibniz manuscript. He begins his analysis of absolute resistance with Theorem 

I: ―A body, the motion of which is uniform is slowing down by every element of place that it passes, 

the remaining velocities being between themselves as the distances which are left to traverse.‖ 

Keeping in mind the above-mentioned remarks, it is possible to reformulate it: If the motion of the 

body is uniform and it is retarded by the resistance proportional to the velocity, velocities will be as 

distances which are left to traverse. The corresponding Theorem I of the Second Book of the Principia 

say: ―If a body is resisted in the ratio of velocity, the motion lost by resistance is as the space gone 

over in its motion.‖ 
7
 Let us show that these two theorems are equivalent. 

While proving this proposition Leibniz does not use a mathematical symbolism constructing his 

demonstration by the simple geometric reasoning: fig.9 gives the dependence of velocity v as a 

function of distance x. It is clear that triangle abc is similar to triangle v0 0 X , therefore: 

                                                               
X

dx

v

dv

0

,  

                                            
5 LH035,09,11, ff. 3r–4r 
6 LH035,09,11, f. 10v 
7 I. Newton. Principia mathematica, A.Mott, trans. London, 1934, p. 235 
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where X – the maximum distance traversed. Then, we will get by integration, for any couple of values 

(x1,v1 ) and (x2 ,v2): 

                                                              
X

xx

v

vv 12

0

21 .  

Since initially v1 v0 , x1 0, what gives: 
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This last formula is the expression of Leibniz’s Theorem I. 
The proof of Newton’s Theorem I will be the same. Supposing the mass is equal to unity, we get 

the principal equation in the following form: 

                                                                  
dt

dx
k

dt

d
, 

where k is a coefficient of proportionality. By integrating this equation and using the initial 

conditions as in the first case, we get  

                                                            .0 kxvv   

In order to determine the coefficient of proportionality k remember that in the end of a distance 

 x = X and ν = 0, therefore 

                                                               .0 kXv   

If we substitute this value in the previous equation, we will have:  

                                                        
X

v
k 0  and x

X

v
vv 0

0 .  

Thus, Newton’s Theorem I is proved, and simultaneously its equivalency to Leibniz’s Theorem I. 

Now let us turn to Theorem II of the Second Book of the Principia:  

If a body is resisted in the ratio of its velocity, and moves, by its inertia only, trough an 

homogeneous medium, and the times be equal, the velocities in the beginning of each of 

the times are in a geometrical proportion, and the spaces described in each of the times 

are as the velocities
8
.  

In Leibniz’s manuscript ―Du frottement‖, a lemma and four theorems correspond to this Newton’s 

proposition.  

Lemma states that increments of time for every element of space are inversely proportional to the 

velocities that the moving body has. Leibniz believes that since for sufficiently small intervals of time 

and for equal intervals of space we can assume that , the inverse proportionality between increments of 

time and velocities follows immediately. 

Then Leibniz proves his Theorem II: the increments of time elapsed is inversely proportional to 

the spaces still to be traversed. Indeed,  

                                                            )(0 xX
X

v
v  

according to Theorem I and  

                                                               
v

dx
dt   

according to the previous Lemma, hence  

                                                       
xX

dx

v

X
dt

0

,  

i.e. the increments of time are inversely proportional to the distances still to be traversed.  

                                            
8 Op. cit, p. 236. 
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The next Theorem III (fig. 10) says that the increments of time are the ordinates of a hyperbola 

with the asymptote EA and the centre in A, the abscises of which are the spaces still to be traversed. 

This statement is easy to demonstrate: in fig.10 the curve GD(D)Q is given; if the ordinates of this 

curve, (B)(D), BD are the increments of time, they are (according to Theorem II) inversely 

proportional to the distances A(B) and AB; in its turn that means that the areas of rectangles A(B)(D) 

and ABD are equal. The equality of the said areas is the characteristic of a hyperbola, and since this 

construction is valid for the arbitrary chosen points (B) and B, the curve GD(D)Q is a hyperbola.  

Theorem IV clearly follows the Theorem III: since the increments of time are the ordinates of a 

hyperbola, the times elapsed will be presented by the sums of the said ordinates, that is, by the areas of 

this hyperbola.  

Theorem V states at last that if the distances still to be traversed by the moving body are as 

numbers, the corresponding times elapsed will be as logarithms. If:  

                                             
xX

dx

v

X
dt

0

 (according to Theorem II),  

then we will get by integration: 

                                                  
xX

X
t

X

v
ln0  and )1(

0 t
X

v

eXx .  

It is obvious that X–x are the distances still to be traversed, and therefore they will be as logarithms. It 

can be also seen that the distances represent a geometric progression because Leibniz (see above) 

chooses the exponential function as the abscissa for his hyperbola; in this case the ―hyperbolic parts‖ 

(as Leibniz calls them), that is, the times will be equal. Therefore the theorem is proved.  

Leibnizian Theorems II–V are equivalent to Theorem II of Newton: Indeed, according to Leibniz 

(Theorem V): 

                                                              )1(
0 t

X

v

eXx   

and the differentiation immediately gives: 

                                                              
t

X

v

ev
dt

dx
v

0

0 ;  

this expression is non other than the statement of Newtonian Theorem II: if…―the times be equal, the 

velocities in the beginning of each of the times are in a geometrical proportion‖ 

It is necessary to explain here that Newton (like Leibniz) considers the exponential function as the 

limiting case of the geometrical progression and presents the exponential scale along the abscissa axis. 

The similarity of their approaches is clearly seen from the corollary to the Newtonian Theorem II. 

Like Leibniz Newton examines here (fig.11) the hyperbola BG with asymptotes AC and CH and 

claims that the time of motion will be represented by the area ABGD. Besides, the input equation of 

Theorem II can be written as: 

                                                          kv
dt

dv
,  

                                          then v v0e
kt

 and )1(0

ktevx .  

Thus we get the similar expressions for the distance traversed, both of Newton and Leibniz, they differ 

only by coefficients because Newton measures the time and the distance along the same interval AC. 

Therefore the results obtained by Leibniz and Newton seems to be identical, and it proves the fact 

that Leibniz has got his theorems during his stay in Paris quite independently. 

Being based on these materials it can express some views concerning the problem why Leibniz 

afterwards denied the idea of perpetuum mobile as well as the possibility of its realization in principle. 

We have seen that friction according to Leibniz is a result of numerous collisions of the body with 

individual particles of the medium. He seems to have also understood that in this process the energy is 

irreversibly lost. When Leibniz came to the proper understanding of the essence of conservation laws 

he simultaneously understood that the perpetuum mobile is impossible to construct because it is 

impossible to get free of friction. 
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