A currently true statement Γ of the form " $\exists f: \mathbb{N} \to \mathbb{N}$ of unknown computability . . .", where f is conjecturally uncomputable, Γ remains unproven when f is computable, and Γ holds forever when f is uncomputable

Apoloniusz Tyszka Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail: rttyszka@cyf-kr.edu.pl

Abstract

We define a function $\gamma:\mathbb{N}\to\mathbb{N}$ which eventually dominates every computable function $\alpha:\mathbb{N}\to\mathbb{N}$. We show that there is a computer program which for $n\in\mathbb{N}$ prints the sequence $\{\gamma_i(n)\}_{i=0}^\infty$ of non-negative integers converging to $\gamma(n)$. We define a function $\beta:\mathbb{N}\to\mathbb{N}$ of unknown computability which eventually dominates every function $\delta:\mathbb{N}\to\mathbb{N}$ with a single-fold Diophantine representation. We show that there is a computer program which for $n\in\mathbb{N}$ prints the sequence $\{\beta_i(n)\}_{i=0}^\infty$ of non-negative integers converging to $\beta(n)$. Let Γ denote the following statement: $\exists f:\mathbb{N}\to\mathbb{N}$ of unknown computability such that f eventually dominates every function $\delta:\mathbb{N}\to\mathbb{N}$ with a single-fold Diophantine representation and there is a computer program which for $n\in\mathbb{N}$ prints the sequence $\{f_i(n)\}_{i=0}^\infty$ of non-negative integers converging to f(n). We show that Γ has all properties from the title of the article.

Key words and phrases: computable function, eventual domination, finite-fold Diophantine representation, limit-computable function, predicate $\mathcal K$ of the current mathematical knowledge, single-fold Diophantine representation, time-dependent truth in mathematics with the predicate $\mathcal K$ of the current mathematical knowledge.

2020 Mathematics Subject Classification: 03D20.

1 Predicate K of the current mathematical knowledge

In sections 1–4, $\mathcal K$ denotes both the predicate satisfied by every currently known theorem and the set of all currently known theorems. The set $\mathcal K$ is time-dependent. Observations 1–5 explain the definition of $\mathcal K$. This definition is intentionally simple, which restricts the set $\mathcal K$. Observations 1–4 hold at any time.

Observation 1. Every written down theorem from past or present belongs to K.

Observation 2. If $\Delta \in \mathcal{K}$, then every particular case of Δ belongs to \mathcal{K} . For example,

$$\{\emptyset \cup \{n\} = \{n\} : n \in \mathbb{N}\} \subseteq \mathcal{K}$$

Observation 3. Since the Replacement Axiom is a scheme of axioms, only finitely many axioms of ZFC belong to K.

Observation 4. K is not deductively closed.

Proof. There exists
$$n \in \mathbb{N}$$
 such that $\neg \mathcal{K}(\underbrace{(2 \cdot 2 = 4) \wedge \ldots \wedge (2 \cdot 2 = 4)}_{\text{conjunction of } n+3 \text{ statements}})$.

Observation 5. Currently,

Hence, K is not deductively closed.

2 A limit-computable function $\gamma: \mathbb{N} \to \mathbb{N}$ which is constructively defined and eventually dominates every computable function $\alpha: \mathbb{N} \to \mathbb{N}$

. For $n \in \mathbb{N}$, let

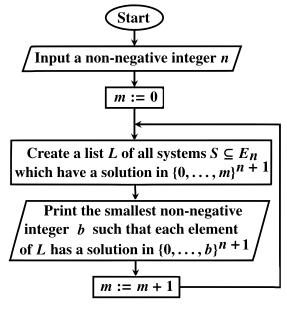
$$E_n = \{1 = x_k, x_i + x_j = x_k, x_i \cdot x_j = x_k : i, j, k \in \{0, \dots, n\}\}$$

Theorem 1. ([5, p. 118]). There exists a limit-computable function $\gamma : \mathbb{N} \to \mathbb{N}$ which eventually dominates every computable function $\alpha : \mathbb{N} \to \mathbb{N}$.

We present an alternative proof of Theorem 1. For $n \in \mathbb{N}$, $\gamma(n)$ denotes the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a solution in \mathbb{N}^{n+1} , then S has a solution in $\{0,\ldots,b\}^{n+1}$. The function $\gamma:\mathbb{N}\to\mathbb{N}$ is computable in the limit and eventually dominates every computable function $\alpha:\mathbb{N}\to\mathbb{N}$, see [6].

Corollary 1. For every $k \in \mathbb{N}$, the function $\mathbb{N} \ni n \to k + \gamma(n) \in \mathbb{N}$ is uncomputable.

Flowchart 1 shows a semi-algorithm which computes $\gamma(n)$ in the limit, see [6].



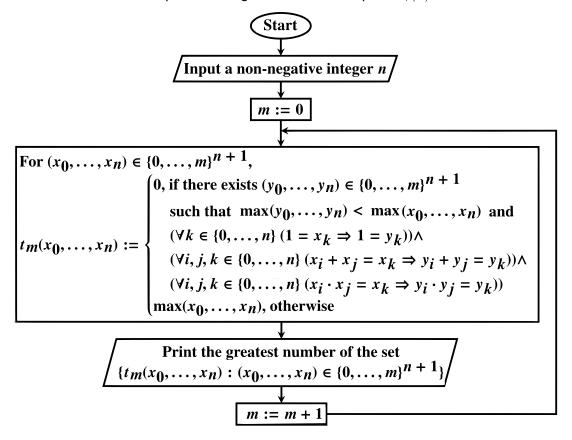
Flowchart 1

A semi-algorithm which computes $\gamma(n)$ in the limit

Proposition 1. If $k \in \mathbb{N}$, then the statement "the function $\mathbb{N} \ni n \to k + \gamma(n) \in \mathbb{N}$ is uncomputable" belongs to K.

Proof. It follows from Corollary 1 and Observations 1 and 2.

Flowchart 2 shows a simpler semi-algorithm which computes $\gamma(n)$ in the limit.



Flowchart 2

A simpler semi-algorithm which computes $\gamma(n)$ in the limit

Lemma 1. For every $n, m \in \mathbb{N}$, the number printed by Flowchart 2 does not exceed the number printed by Flowchart 1.

Proof. For every
$$(a_0,\ldots,a_n)\in\{0,\ldots,m\}^{n+1}$$
,
$$E_n\supseteq\{1=x_k:\;(k\in\{0,\ldots,n\})\land(1=a_k)\}\cup \\ \{x_i+x_j=x_k:\;(i,j,k\in\{0,\ldots,n\})\land(a_i+a_j=a_k)\}\cup \\ \{x_i\cdot x_j=x_k:\;(i,j,k\in\{0,\ldots,n\})\land(a_i\cdot a_j=a_k)\}$$

Lemma 2. For every $n, m \in \mathbb{N}$, the number printed by Flowchart 1 does not exceed the number printed by Flowchart 2.

Proof. Let $n, m \in \mathbb{N}$. For every system of equations $S \subseteq E_n$, if $(a_0, \ldots, a_n) \in \{0, \ldots, m\}^{n+1}$ and (a_0, \ldots, a_n) solves S, then (a_0, \ldots, a_n) solves the system of equations

$$\widetilde{\mathcal{S}} := \{1 = x_k : (k \in \{0, \dots, n\}) \land (1 = a_k)\} \cup \{x_i + x_j = x_k : (i, j, k \in \{0, \dots, n\}) \land (a_i + a_j = a_k)\} \cup \{x_i \cdot x_j = x_k : (i, j, k \in \{0, \dots, n\}) \land (a_i \cdot a_j = a_k)\}$$

Theorem 2. For every $n, m \in \mathbb{N}$, Flowcharts 1 and 2 print the same number.

Proof. It follows from Lemmas 1 and 2.

3

3 A limit-computable function $\beta:\mathbb{N}\to\mathbb{N}$ of unknown computability which is constructively defined and eventually dominates every function $\delta:\mathbb{N}\to\mathbb{N}$ with a single-fold Diophantine representation

. The Davis-Putnam-Robinson-Matiyasevich theorem states that every listable set $\mathcal{M} \subseteq \mathbb{N}^n$ $(n \in \mathbb{N} \setminus \{0\})$ has a Diophantine representation, that is

$$(a_1, \dots, a_n) \in \mathcal{M} \iff \exists x_1, \dots, x_m \in \mathbb{N} \ W(a_1, \dots, a_n, x_1, \dots, x_m) = 0$$
 (R)

for some polynomial W with integer coefficients, see [2]. The representation (R) is said to be single-fold, if for any $a_1,\ldots,a_n\in\mathbb{N}$ the equation $W(a_1,\ldots,a_n,x_1,\ldots,x_m)=0$ has at most one solution $(x_1,\ldots,x_m)\in\mathbb{N}^m$. The representation (R) is said to be finite-fold, if for any $a_1,\ldots,a_n\in\mathbb{N}$ the equation $W(a_1,\ldots,a_n,x_1,\ldots,x_m)=0$ has only finitely many solutions $(x_1,\ldots,x_m)\in\mathbb{N}^m$.

Conjecture 1. ([1, pp. 341–342], [3, p. 42], [4, p. 745]). Every listable set $\mathcal{M} \subseteq \mathbb{N}^n$ $(n \in \mathbb{N} \setminus \{0\})$ has a single-fold Diophantine representation.

Conjecture 2. ([1, pp. 341–342], [3, p. 42], [4, p. 745]). Every listable set $\mathcal{M} \subseteq \mathbb{N}^n$ $(n \in \mathbb{N} \setminus \{0\})$ has a finite-fold Diophantine representation.

Let Φ denote the following statement: the function $\mathbb{N}\ni n\to 2^n\in\mathbb{N}$ eventually dominates every function $\delta:\mathbb{N}\to\mathbb{N}$ with a single-fold Diophantine representation. For $n\in\mathbb{N}$, let

$$g(n) = \begin{cases} 2^n, & \text{if } \Phi \text{ holds} \\ \gamma(n), & \text{otherwise} \end{cases}$$

The function $g: \mathbb{N} \to \mathbb{N}$ is computable if and only if Φ holds. Currently,

$$(\neg \mathcal{K}(\Phi)) \land (\neg \mathcal{K}(\neg \Phi)) \land (\neg \mathcal{K}(g \ is \ computable)) \land (\neg \mathcal{K}(g \ is \ uncomputable))$$

Let Ψ denote the following statement: the function $\mathbb{N} \ni n \to 2^n \in \mathbb{N}$ eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a finite-fold Diophantine representation. For $n \in \mathbb{N}$, let

$$h(n) = \begin{cases} 2^n, & \text{if } \Psi \text{ holds} \\ \gamma(n), & \text{otherwise} \end{cases}$$

The function $h: \mathbb{N} \to \mathbb{N}$ is computable if and only if Ψ holds. Currently,

$$(\neg \mathcal{K}(\Psi)) \wedge (\neg \mathcal{K}(\neg \Psi)) \wedge (\neg \mathcal{K}(h \ is \ computable)) \wedge (\neg \mathcal{K}(h \ is \ uncomputable))$$

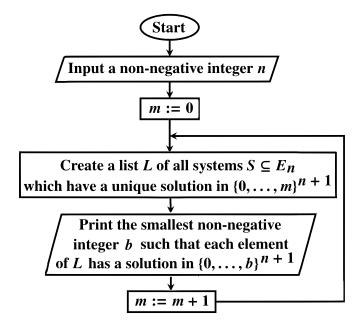
Lemma 3. The function g is computable in the limit and eventually dominates every function $\delta: \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation. The function h is computable in the limit and eventually dominates every function $\delta: \mathbb{N} \to \mathbb{N}$ with a finite-fold Diophantine representation.

Proof. It follows from Theorem 1.

For $n \in \mathbb{N}$, $\beta(n)$ denotes the smallest $b \in \mathbb{N}$ such that if a system of equations $S \subseteq E_n$ has a unique solution in \mathbb{N}^{n+1} , then this solution belongs to $\{0,\ldots,b\}^{n+1}$.

Theorem 3. The function $\beta : \mathbb{N} \to \mathbb{N}$ is computable in the limit and eventually dominates every function $\delta : \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

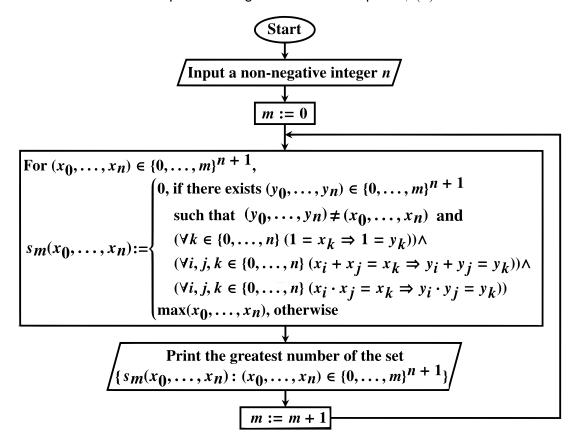
Proof. This is proved in [6]. The term "dominated" in the title of [6] means "eventually dominated". Flowchart 3 shows a semi-algorithm which computes $\beta(n)$ in the limit, see [6].



Flowchart 3

A semi-algorithm which computes $\beta(n)$ in the limit

Flowchart 4 shows a simpler semi-algorithm which computes $\beta(n)$ in the limit.



Flowchart 4

A simpler semi-algorithm which computes $\beta(n)$ in the limit

5

Lemma 4. For every $n, m \in \mathbb{N}$, the number printed by Flowchart 4 does not exceed the number printed by Flowchart 3.

Proof. For every $(a_0, ..., a_n) \in \{0, ..., m\}^{n+1}$,

$$E_n \supseteq \{1 = x_k : (k \in \{0, \dots, n\}) \land (1 = a_k)\} \cup$$
$$\{x_i + x_j = x_k : (i, j, k \in \{0, \dots, n\}) \land (a_i + a_j = a_k)\} \cup$$
$$\{x_i \cdot x_j = x_k : (i, j, k \in \{0, \dots, n\}) \land (a_i \cdot a_j = a_k)\}$$

Lemma 5. For every $n, m \in \mathbb{N}$, the number printed by Flowchart 3 does not exceed the number printed by Flowchart 4.

Proof. Let $n, m \in \mathbb{N}$. For every system of equations $S \subseteq E_n$, if $(a_0, \ldots, a_n) \in \{0, \ldots, m\}^{n+1}$ is a unique solution of S in $\{0, \ldots, m\}^{n+1}$, then (a_0, \ldots, a_n) solves the system of equations

$$\widehat{S} := \{ 1 = x_k : (k \in \{0, \dots, n\}) \land (1 = a_k) \} \cup$$

$$\{ x_i + x_j = x_k : (i, j, k \in \{0, \dots, n\}) \land (a_i + a_j = a_k) \} \cup$$

$$\{ x_i \cdot x_j = x_k : (i, j, k \in \{0, \dots, n\}) \land (a_i \cdot a_j = a_k) \}$$

By this and the inclusion $\widehat{S} \supseteq S$, \widehat{S} has exactly one solution in $\{0,\ldots,m\}^{n+1}$, namely (a_0,\ldots,a_n) .

Theorem 4. For every $n, m \in \mathbb{N}$, Flowcharts 3 and 4 print the same number.

Proof. It follows from Lemmas 4 and 5.

Statement 1. There exists a limit-computable function $f: \mathbb{N} \to \mathbb{N}$ of unknown computability which eventually dominates every function $\delta: \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation.

Proof. Statement 1 follows constructively from Theorem 3 by taking $f=\beta$ because the following conjunction

$$(\neg \mathcal{K}(\beta \text{ is computable})) \land (\neg \mathcal{K}(\beta \text{ is uncomputable}))$$

holds. Statement 1 follows non-constructively from Lemma 3 by taking f=g because the following conjunction

$$(\neg \mathcal{K}(q \text{ is computable})) \land (\neg \mathcal{K}(q \text{ is uncomputable}))$$

holds.

Since the function γ in Theorem 1 is not computable, Statement 1 does not follow from Theorem 1.

Proposition 2. Statement 1 strengthens a mathematical theorem. Statement 1 refers to the current mathematical knowledge and may be false in the future. Statement 1 does not express what is currently unproved in mathematics.

Proof. Statement 1 strengthens Statement 1 without the epistemic condition. The weakened Statement 1 is a theorem which follows from Theorem 1. Statement 1 claims that some mathematically defined function $f: \mathbb{N} \to \mathbb{N}$ satisfies

(f is computable in the limit) \land ($\neg \mathcal{K}(f$ is computable)) \land ($\neg \mathcal{K}(f$ is uncomputable)) \land (f eventually dominates every function $\delta: \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation) Conjecture 1 disproves Statement 1.

Statement 2. Statement 1 holds for finite-fold Diophantine representations.

Proof. It follows from Lemma 3 by taking f = h because the following conjunction

$$(\neg \mathcal{K}(h \text{ is computable})) \land (\neg \mathcal{K}(h \text{ is uncomputable}))$$

holds.

Statement 2 strengthens Statement 1. For Statement 2, there is no known computer program that computes f in the limit.

4 The statement Γ from the title of the article

Statement 3. In Statement 1, we can require that there exists a computer program which takes as input a non-negative integer n and prints the sequence $\{f_i(n)\}_{i=0}^{\infty}$ of non-negative integers converging to f(n).

Proof. Any computer program that implements the semi-algorithm shown in Flowchart 3 or 4 is correct. \Box

Let Γ denote the following statement: $\exists f: \mathbb{N} \to \mathbb{N}$ of unknown computability such that f eventually dominates every function $\delta: \mathbb{N} \to \mathbb{N}$ with a single-fold Diophantine representation and there is a computer program which for $n \in \mathbb{N}$ prints the sequence $\{f_i(n)\}_{i=0}^{\infty}$ of non-negative integers converging to f(n).

Proposition 3. The statement Γ has all properties from the title of the article.

Proposition 4. The statement Γ may hold when $\mathcal{K}(\beta \text{ is computable})$.

Proof. For $n \in \mathbb{N}$, $\xi(n)$ denotes the smallest $b \in \mathbb{N} \setminus \{0\}$ such that if a system of equations $\mathcal{S} \subseteq E_n$ has a solution in \mathbb{Q}^{n+1} , then \mathcal{S} has a solution which consists of rationals whose numerators and denominators belong to $\{-b,\ldots,b\}$. The function $\xi:\mathbb{N} \to \mathbb{N}$ is computable in the limit. We skip the proof, which is similar to the proof that γ is computable in the limit. Currently,

$$(\neg \mathcal{K}(\xi \text{ is computable})) \land (\neg \mathcal{K}(\xi \text{ is uncomputable}))$$

At any future time, the conjunction

$$(\neg \mathcal{K}(\xi \text{ is computable})) \land (\neg \mathcal{K}(\xi \text{ is uncomputable})) \land \mathcal{K}(\beta \text{ is computable})$$

may hold and implies the statement Γ with $f = \xi + \beta$.

Summarizing, the predicate $\mathcal K$ can strengthen existential mathematical statements when $\mathcal K$ is inserted after \exists and refers to a part of the statement.

5 Predicate K of the written down mathematical knowledge

In this section, K denotes both the predicate satisfied by every written down theorem and the finite set of all written down theorems. It changes what is taken as known in mathematics.

Proposition 5. There exists $k \in \mathbb{N}$ such that the computability of the function

$$\mathbb{N} \ni n \to k + \gamma(n) \in \mathbb{N}$$

is unknown. For this k, Statements 1 and 2 hold when $f(n) = k + \gamma(n)$.

Proof. It follows from $card(\mathcal{K}) < \omega$.

Proposition 5 contradicts Proposition 1 with the right definition of K.

References

- [1] M. Davis, Yu. Matiyasevich, J. Robinson, *Hilbert's tenth problem, Diophantine equations: positive aspects of a negative solution;* in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., Providence, RI, 1976, 323–378, *http://doi.org/10.1090/pspum/028.2*; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., Providence, RI, 1996, 269–324.
- [2] Yu. Matiyasevich, Hilbert's tenth problem, MIT Press, Cambridge, MA, 1993.
- [3] Yu. Matiyasevich, *Hilbert's tenth problem: what was done and what is to be done,* in: Proceedings of the Workshop on Hilbert's tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000, 1–47, http://doi.org/10.1090/conm/270.
- [4] Yu. Matiyasevich, *Towards finite-fold Diophantine representations*, J. Math. Sci. (N. Y.) vol. 171, no. 6, 2010, 745–752, http://doi.org/10.1007%2Fs10958-010-0179-4.
- [5] J. S. Royer and J. Case, *Subrecursive Programming Systems: Complexity and Succinct-ness*, Birkhäuser, Boston, 1994.
- [6] A. Tyszka, All functions $g: \mathbb{N} \to \mathbb{N}$ which have a single-fold Diophantine representation are dominated by a limit-computable function $f: \mathbb{N} \setminus \{0\} \to \mathbb{N}$ which is implemented in MuPAD and whose computability is an open problem, in: Computation, cryptography, and network security (eds. N. J. Daras, M. Th. Rassias), Springer, Cham, 2015, 577–590, http://doi.org/10.1007/978-3-319-18275-9_24.